
Asynchronous Secure Communication Tolerating

Mixed Adversaries

K. Srinathan1?, M. V. N. Ashwin Kumar2, and C. Pandu Rangan1 ??

1 Department of Computer Science and Engineering,
Indian Institute of Technology, Madras,

Chennai-600036, INDIA.
ksrinath@cs.iitm.ernet.in,rangan@iitm.ernet.in

2 Department of Computer Science,
Cornell University, Ithaca, New York.

mvnak@cs.cornell.edu

Abstract. We study the problem of secure communication tolerating
generalized mixed adversaries across an underlying completely asyn-
chronous incomplete network. We explore the interplay between the min-
imal network connectivity required and the degree of security attainable,
and completely characterize the network requirements for attaining per-
fect and unconditional (with negligible error) security. We also consider
networks with additional broadcast capabilities and prove that uncondi-
tionally secure communication can be achieved with much lesser connec-
tivity if the network assures the broadcast primitive.

1 Introduction

Consider n players who are connected by an underlying communication network
N . Our concern is to make sure that every player can talk to every other player.
Two players can talk to each other if they are connected by an edge. Hence, we
can trivially guarantee that every player can talk to every other player if the
underlying network N is complete. But do we require all the nC2 direct connec-
tions (or edges)? Can we not ensure that all the players can communicate with
one another with a lesser number of edges? Evidently, the smallest connected
network (viz. a tree) would suffice to allow every pair of players to be able to
talk (though indirectly). However, such minimal connectivity is not enough if
one player wants to secretly talk to another player, i.e., the sender S has to
transmit a message to the receiver R such that all the other players should get
no information about the message transmitted, even if some non-trivial subset
of players (excluding S and R) collude and behave maliciously. The interplay
between information-theoretically secure communication and minimal network
connectivity has been studied extensively. Dolev et. al. in [5] proved that a syn-
chronous network has to be at least (max(ta, tp) + ta + 1)-connected for secure
? Financial support from Infosys Technologies Limited, India, is acknowledged.

?? Partially supported by DRDO collaborative project on Communication and Net-
working Technologies.

226 K. Srinathan, M.V.N. Ashwin Kumar, and C. Pandu Rangan

message transmission to be guaranteed between every two players, where up
to tp players collude and only eavesdrop on the messages routed through them
(passive faults), while up to ta players collude and maliciously try to disrupt
the protocol apart from eavesdropping (active or Byzantine faults). These result
were recently generalized in [12] to the non-threshold case modeling only Byzan-
tine faults: perfectly secure transmission is possible if and only if the union of the
players in no two potentially faulty subsets of players forms a vertex cut-set of
the graph (wherein the potentially faulty subsets of players are enumerated as an
adversary structure[9]). However, these results are restricted to the case where
the underlying network is synchronous. Asynchronous perfectly secure commu-
nication for the case of threshold adversaries was studied in [13]. In essence, a
(max(ta, tp) + 2ta + 1)-connected network is necessary and sufficient. Uncondi-
tionally secure communication with negligible error in reliability (i.e., R might
receive a wrong message) was studied in detail in [8]. However, these results are
restricted to the threshold case assuming that the underlying network is syn-
chronous. We initiate a study of asynchronous secure communication tolerating
faulty players, some passive and some others active, characterized as generalized
mixed adversary structures (as in [7]) and investigate the minimal connectivity
requirements for perfect security and unconditional security.

A very important primitive used by all protocols for secure communication
is that of reliable, yet insecure communication (e.g. [5] calls it public transmis-
sion). By this we mean, any message m sent by player S to player R is correctly
received by R; however, the other players may have considerable (or even full)
information about m. We can achieve this reliable communication trivially if we
are assured that the network N has broadcast capability.3 However, if N does not
have broadcast capabilities, one should be able to simulate reliable transmission
using a protocol. We study the minimum network connectivity which guaran-
tees the possibility of such reliable transmission in networks without broadcast
capabilities. We show that the existence of a broadcast channel does not reduce
the connectivity requirement for perfectly secure asynchronous communication.

In line with [7], the generalized mixed adversary is characterized by a gen-
eralized adversary structure (see Definition 1), i.e. a set of pairs (D,E), where
D and E are disjoint subsets of the set of players, wherein the adversary may
select one arbitrary pair from the structure and corrupt the players in D actively
(i.e. take full control) and in addition passively corrupt (i.e. read and process
information of) the players in E. Among our results, we show that in the perfect
setting, secure message transmission between any pair of (honest) nodes in a
completely asynchronous network is possible if and only if neither the removal
of the players in the union of any three sets of potential active collusions, nor the
removal of the players in the union of any two sets of potential active collusions
with any one corresponding set of potential passive collusion, leaves the network
disconnected. Evidently, the above condition generalizes the threshold adversary
requirement of (max(ta, tp)+2ta+1)-connected network. Interestingly, we prove

3 By definition, if a message m is sent using a broadcast channel then all the players
correctly receive (the same) m.

Asynchronous Secure Communication Tolerating Mixed Adversaries 227

that the same condition given above is necessary and sufficient even in the case
of unconditional security, though the resultant protocol is less complex. Thus,
the minimal connectivity requirement is unaffected by he weakening of security.
However, in the presence of a broadcast channel, the perfect setting still requires
the same amount of connectivity whereas in the unconditional setting, it is (nec-
essary and) sufficient if the players in the union of any two sets of potential
active collusions with any one corresponding set of potential passive do not form
a vertex cut-set of the network (i.e., only the second half of the above condition
is sufficient). In all the above cases, the designed protocols have both their com-
putation and communication complexities polynomial in the size of the maximal
basis of the adversary structure.

Motivated by the facts that network synchrony is hard to achieve and that a
threshold adversarial model is insufficient to model all types of mutual (dis)trust,
we generalize the results of [5, 13, 12] to the generalized mixed adversary model
and/or to asynchronous networks (see Theorem 7), in the perfect setting. Fur-
thermore, in the unconditional setting, we initiate the study of asynchronous
secure communication (see Theorem 5) and the study of unconditional with
broadcast capability model (see Theorem 3).

Asynchronous secure communication is an important primitive for secure
multiparty computation over asynchronous incomplete networks. Thus, our re-
sults can be used to transform the asynchronous secure computation protocols
that run over a complete network (e.g. [2, 3]) into ones that can be executed over
incomplete networks.

�� ������

������ ��

P1

P3
P4

P2

Fig. 1. Net-
work.

The usefulness of some of our results is illustrated, for instance,
through the following implication: Consider a asynchronous chorded
ring network of four players as shown in Fig. 1. The most powerful ad-
versary that previous known protocols (e.g. [13]) for perfectly secure
communication among the players over the asynchronous network
in Fig. 1 could tolerate is one that passively corrupts one arbitrary
player (since the chordal ring network is 2-connected, we require that
2 > max(ta, tp) + 2ta, giving ta = 0 and tp = 1). Using our results,
one can perfectly tolerate an adversary that passively corrupts player
P1 or player P4 or (even) actively corrupts player P2 or player P3.

2 Preliminaries

We consider a network N (P, E), where P = {P1, P2, . . . , Pn} denote the set of
players (nodes) in the network that are connected by the edges as defined by
E ⊆ P×P. Formally, all the n players (nodes) in the network N can be modeled
as probabilistic interactive Turing Machines. We assume that randomization is
achieved through random bits. We assume that the underlying network N is
asynchronous, i.e., a message sent on a channel/path can be arbitrarily delayed
(similar to the communication model in [6]). However, if two nodes Pi and Pj

228 K. Srinathan, M.V.N. Ashwin Kumar, and C. Pandu Rangan

are directly connected by a link (edge), then each message that player Pi sends
to Pj through the link is eventually received (albeit probably in any order).

The set of faults in the players is usually captured using the notion of an
external centralized adversary. A computationally unbounded adversary B is
a probabilistic strategy that controls/corrupts a subset of players (and/or the
edges connecting the players) and endeavors to violate the security of the system.
We assume, without loss of generality, that the adversary can control/corrupt
only the players and not the edges connecting them.4

Our notional adversary is a passive adversary if all dishonest players exhibit
only passive adversarial behavior, that is, all the corrupted players can collusively
gather all the information they get and run any arbitrary computation on this
information. The adversary is a Byzantine adversary if all dishonest players
show active adversarial behaviour, that is, in addition to eavesdropping, they
can maliciously alter their behavior in an arbitrary and coordinated fashion.5 If
some players exhibit only passive adversarial behavior while others exhibit active
adversarial behavior, the adversary is called a mixed adversary. Depending upon
the amount of knowledge one has about the adversarial behaviour of the players,
adversaries can be modeled as either threshold adversaries or generalized (or non-
threshold) adversaries. When modeled as a threshold adversary, a maximum of
t out of the n players are assumed to exhibit adversarial behaviour. Hirt and
Maurer [9] transferred and adjusted the notion of access structures (introduced
in [10] for secret sharing) to the field of general secure multiparty computation,
which was subsequently adapted to the secure communication setting in [12]:
the behaviour of the faulty players is characterized by an adversary structure,
which is a monotone set of subsets of players, wherein the players in any one of
these subsets is corruptible by the adversary.

In our study we consider mixed adversaries modeled using generalized adver-
sary structures (like in [7]). In this model, some subset of players D show active
adversarial behaviour and at the same time, some other subset of players E show
only passive adversarial behaviour. Hence, the adversary is characterized by a
monotone6 set of classes C = (D,E), where D,E ⊂ P and D ∩ E = ∅. The
players in one specific class is corruptible by the adversary. – players in D are
actively corrupted while those in E are passively corrupted.

Definition 1 ([7]). A generalized mixed adversary structure A is a monotone
set of classes C = (D,E), where D,E ⊂ P and D∩E = ∅. The maximal basis of
A is defined as the collection of classes {(D,E)|(D,E) ∈ A, 6 ∃(X,Y) ∈ A, ((X ⊃
D) ∩ (Y ⊃ E))}. We abuse the notation A to denote the maximal basis.

4 This is because, any adversary corrupting both the players and edges of a network
N can be simulated by an adversary corrupting the players alone on a new network
N ′ got by replacing each insecure edge e = (Pi, Pj) by a player Pij and two edges
e1 = (Pi, Pij) and e2 = (Pij , Pj).

5 Note that this subsumes fail-stop faults wherein the dishonest players alter their
behaviour in a pre-specified manner, viz., do not respond at all.

6 Monotone means that if a class C = (D,E) belongs to the structure, then all classes
C′ = (D′, E′) such that D′ ⊆ D and E′ ⊆ E are also elements of the structure.

Asynchronous Secure Communication Tolerating Mixed Adversaries 229

Remark: Similar to the classical threshold model, the threshold mixed adver-
sarial model can be defined as one in which up to ta players maliciously attempt
to disrupt the protocol, while up to tp other players only eavesdrop.
We introduce the notion of a path adversary (like in [12]). Any message trans-

mitted from a player Pi to a player Pj should traverse a path in N connecting
the players. Hence, it is more appropriate to consider paths as corruptible enti-
ties rather than considering the adversarial behaviour of the individual players.
This path adversary we characterize with the help of a generalized mixed struc-
ture. Let the set of all paths between players Pi and Pj in N be denoted by
Xpath(Pi, Pj).

Definition 2. Given the generalized mixed adversary structure A, we denote
the path adversary structure over a subset of paths Φ(Pi, Pj) ⊆ Xpath(Pi, Pj) as

A
[Φ]
path(Pi, Pj). A

[Φ]
path(Pi, Pj) is a monotone set of subset pairs of Φ(Pi, Pj). For

every class C = (D,E) ∈ A there is a corresponding class Λ = (ΛD, ΛE) ∈

A
[Φ]
path(Pi, Pj) such that ΛD (or ΛE) is the set of all paths in Φ(Pi, Pj) between

Pi and Pj passing through any of the players in D (or E, respectively). More

precisely, A
[Φ]
path(Pi, Pj) ⊂ 2

Φ(Pi,Pj), such that

A
[Φ]
path(Pi, Pj) = {(ΛD, ΛE)|∀(D,E)∈A,(ΛD=Φ(Pi,Pj)\(N[P\D]))∩(ΛE=Φ(Pi,Pj)\(N[P\E]))}

where N[V] denotes the set of all paths in the sub-network induced by N on the
vertices in V .

Definition 3. Given the generalized mixed adversary structure A, the network
is said to be A(k,`)-connected if for any max(k, `) classes Ci1 , Ci2 , . . . , Cimax(k,`)

from A, the deletion of the nodes in
⋃k
j=1Dij ∪

⋃`
j=1Eij from the network does

not disconnect the network. With respect to two players (nodes) Pi and Pj, the
network is said to be A(k,`)(Pi, Pj)-subconnected if for any max(k, `) classes

Ci1 , Ci2 , . . . , Cimax(k,`)
from A, the deletion of the nodes in

⋃k
j=1Dij ∪

⋃`
j=1Eij

from the network does not render Pi unreachable from Pj.

Remark: It is evident that that for the threshold mixed adversarial model, the
A(k,`)-connectivity condition translates to κ > kta + `tp, where κ denotes the
size of the smallest vertex cut.
Since the underlying network is asynchronous, the adversary has the power to

schedule the messages. A message routed on a path having an actively corrupted
player (which we shall call henceforth as an actively corrupted path) can schedule
the message in such a way that the receiver will be made to wait for it for
arbitrary long periods of time. Actually, these actively corrupted paths may
just withhold the messages routed through them and thus receiver R may not
listen from the sender S on paths in ΛD, (ΛD, ΛE) ∈ A

X
path(S,R). However, the

receiver can not distinguish between honest paths which are slow (thanks to the
malicious scheduling) and malicious paths which withhold information. Hence,
in the worst case, the set of paths on which R can expect to receive information
might contain all the malicious and the eavesdropping paths!

230 K. Srinathan, M.V.N. Ashwin Kumar, and C. Pandu Rangan

3 Secure Message Transmission

We consider the problem of transmitting a message m from a player Pi to a
player Pj securely. We consider perfect and unconditional (with a small error
probability) security in the information theoretic sense. In this section we define
perfect security and unconditional security. Let the message to be transmitted
securely be drawn from a (prespecified) fixed finite field F and let Γ denote the
underlying probability distribution on this field. Define the View of a player
Pj in N , at any point of the execution of a protocol Π for secure message
transmission, to be the information the player can get from its local input to
the protocol (if any), all the messages that Pj had earlier sent or received, the
protocol code executed by Pj and its random coins. The View of the adversary
(i.e. the View of the players exhibiting adversarial behaviour) at any point of the
execution of Π is defined as all the information that the adversary can get from
the Views of all the players corrupted by the adversary (i.e. all the information
that these players can commonly compute from their Views).
For every message m ∈ F , any adversary B characterized by A, and any pro-

tocol Π for secure message transmission, let Γ̂ (B,m,Π) denote the probability
distribution on the View of the adversary B at the end of the execution of Π
when the message sent is m.

Definition 4 (Secure Message Transmission). A protocol Π is said to fa-
cilitate perfectly secure message transmission between two players Pi and Pj if
for any message m, drawn from Γ on F , and for every adversary B, character-
ized as an (generalized mixed) adversary structure A, the following conditions
are satisfied:

1. Secrecy: Γ̂ (B,m′, Π) ≡ Γ̂ (B,m,Π) ∀m′ ∈ F . That is, the above two dis-
tributions are identical irrespective of the message transmitted.

2. Resiliency: The protocol certainly terminates with the receiver Pj receiving
the message m correctly.

The protocol Π is said to be unconditionally secure (with negligible error) if
a negligible error probability δ can be tolerated with respect to the Resiliency
condition, i.e., the protocol terminates with an overwhelming probability 1−δ
and the receiver Pj receives m with a negligibly small error probability δ. The
probability is over the choice of m and the coin flips of each of the players and
the adversary (this is same as the (0, δ)-security as defined in [8]).

4 Issues

Before we start designing protocols for asynchronous secure communication be-
tween the sender S and the receiverR over the network N , tolerating generalized
mixed adversaries, there are a few critical issues which have to be dealt with:

1. What are the paths that, out of the potentially exponential number of paths
between S and R, should be used for transmission? Note that irrespective

Asynchronous Secure Communication Tolerating Mixed Adversaries 231

of the total number of paths from S to R, only a polynomial (on the input
size, i.e., n + |A|) sized subset of the paths should be used if the resultant
protocol is to be feasible. Furthermore, one should be able to compute the
above subset of paths in polynomial time!

2. What to send along the above chosen paths? In the sequel, it is shown that
the answer depends on the setting.

3. How to route a message along a path? Since, the adversary can actively
corrupt some players, these intermediate players can misroute a message.

4. How does the receiver R distinguish between two different paths having the
same final link? This may be required since the receiver invariably has to
“reconstruct” the sender’s message from the data that he receives via many
different paths, and the data may be an ordered set.

4.1 Solving Issue #1: Critical Paths

Consider a network in which at most t nodes are faulty. In such a
case, irrespective of which nodes are corrupted it is evident that
in the worst case, not more than t disjoint paths can be corrupted
(one node per path). Hence if the network is κ-connected, it is
sufficient to abstract the network as k disjoint paths between S

and R of which any t paths could be faulty; or even better as k
wires of which any t could be corrupted. This is exactly what [5,
13] have done! In the above case, we call the k (disjoint) paths
that are chosen as the critical paths. Note that the number of crit-
ical paths is usually much lower than the total number of paths
between S and R. Unfortunately, when the players’ adversarial
behaviour is modeled as a generalized mixed adversary, however,
the non-disjointness of the communication paths is indispensable.

C

B

A

D
F

E

RS

G

Fig. 2. Network
N1

For example, consider the networkN1 in the Fig. 2. Let the adversary be char-
acterized by the following mixed adversary structure A = {(A, ∅), (B, ∅), (F, ∅),
(G, ∅)}. There are in total five paths from S to R. It can be easily seen (using
the results of [5, 13]) that any protocol for asynchronous secure message trans-
mission between S and R should necessarily use four of the paths between S
and R, leaving out one of the two paths passing through F (since the node F is
potentially corruptible). Note that in any case, the chosen four paths are all not
disjoint! Furthermore, the path that is left out is not a critical path.
We now need to develop a deterministic methodology for computing the criti-

cal paths; moreover, we require that the algorithm runs in time polynomial in the
input size. Assume that the sender S and receiver R are A(k1,0)-subconnected
as well as A(k2,1)-subconnected.7 We solve the above issue by providing an al-
gorithm (see Fig. 3) with the following properties: (1) The algorithm takes as
7 It will be clear from the sequel that in the various settings considered in this paper,
we will be dealing with only A(3,0)-subconnectivity and A2,1)-subconnectivity. More
precisely, in the perfect and unconditional settings, k1 = 3 and k2 = 2; and in the
unconditional with broadcast setting, k1 = 0 and k2 = 2.

232 K. Srinathan, M.V.N. Ashwin Kumar, and C. Pandu Rangan

input N (P, E), A, and the sender S and the receiver R. (2) The algorithm out-
puts a set of paths between S and R in N , denoted by PotXa(S,R). (3) The
algorithm runs in time polynomial in |P| and |A|, viz. O(|P|·|A|6). (4) The num-
ber of paths in PotXa(S,R) is polynomial in |A|, viz. O(|A|

3). (5) A solution
using PotXa(S,R) exists if and only if a solution that uses the full set of paths
Xpath(S,R) exists, i.e. it is ensured that S and R are A(k1,0)-subconnected as
well as A(k2,1)-subconnected even if the set of paths is restricted to PotXa(S,R).

Computing PotXa(S,R)

Inputs: N (P, E), A, sender S and receiver R.

Let PotXa(S,R) = ∅ and let A
(1)
access = {Ai = (P \D)|∀(D,E) ∈ A}.

For i1 = 1 to |A
(1)
access|

For i2 = i1 + 1 to |A
(1)
access|

. . .

For ik1 = ik1−1 + 1 to |A
(1)
access|

IF (PotXa(S,R) ∩ N[Ai1
∩Ai2

∩...∩Aik1
]) == ∅

THEN Select at random some path p in N[Ai1
∩Ai2

∩...∩Aik1
]

and set PotXa(S,R)← PotXa(S,R) ∪ {p}.
NEXT ik1

. . .
NEXT i2

NEXT i1
Let A(2)

access = {Ai = (P \ (D ∪ E)) |∀(D,E) ∈ A}.

For i1 = 1 to |A
(2)
access|

. . .

For ik2 = ik2−1 + 1 to |A
(1)
access|

IF (PotXa(S,R) ∩ N[Ai1
∩...∩Aik2

]) == ∅

THEN Select at random some path p in N[Ai1
∩...∩Aik2

]

and set PotXa(S,R)← PotXa(S,R) ∪ {p}.
NEXT ik2
. . .

NEXT i1

Comment: The above construction ensures that S and R are A(k1,0)-subconnected as well as
A(k2,1)-subconnected even if the set of paths is restricted to PotXa(S,R).

Fig. 3. Identifying the critical paths PotXa(S,R).

Theorem 1. The algorithm in Fig. 3 satisfies all the above stated properties.
We assume the worst case of k1 = 3 and k2 = 2.

Proof of Property 3: The only computational intensive step is the IF step,
which takes O(|P|·|PotXa(S,R)|) time. Since, |PotXa(S,R)| = O|A|3 (see Proof
of Property 4), the overall computational complexity is O(|P| · |A|6).
Proof of Property 4: The property is clear from the fact that in each of the{(

|A|
3

)
+

(
|A|
2

)}
iterations, the size of PotXa(S,R) increases by at most

one.
Proof of Property 5: Follows from the construction. ut

Asynchronous Secure Communication Tolerating Mixed Adversaries 233

4.2 Solving Issues #2 & #4: Anonymous Secret Sharing

We require that the adversary should get no information about the message,
whilst R should be able to reconstruct the message (or should at least be able
to detect a fault, if not correct it!). This is reminiscent of secret sharing. More-
over, R may not be able to distinguish between shares routed on different paths
arriving through the same final link. Therefore the requirement is that of anony-
mous secret sharing [4]. In our case, anonymization is easily achieved by creating
self-identifying message packets by appending the intended path number to the
message, i.e., if the message packet $i is to be routed through path pi, the self-
identifying packet would be ($i, i). The above abstraction helps us work with
secret sharing alone since it can easily be “compiled” into anonymous secret
sharing. In the unconditional case, as will be illustrated in the sequel, it is suffi-
cient if the secret is split into shares such that their sum gives back the secret.
However, in the perfect setting, we use the linear perfect secret sharing schemes
based on monotone span programs [11].

4.3 Solving Issue #3: Routing Algorithm

As a recap, a routing primitive is essential since it is not guaranteed that a
message intended to be routed along a path will reach the receiver on that par-
ticular path. We prove that such a strong primitive is not required and the
weaker primitive described in Observation 11 is sufficient to design secure mes-
sage transmission protocols. We next provide the routing primitive ∆async (see
Fig. 4) for asynchronous networks.

Observation 11 It is sufficient to have a routing algorithm ∆ that guarantees
that on every honest path pi (identified by i), R receives exactly one correct
self-identifying packet, namely ($i, i).

We now prove that the algorithm ∆async satisfies the weak routing primitive
described in Observation 11.

Theorem 2. The Routing Algorithm ∆async for asynchronous networks, given
in Fig. 4, satisfies the specification as in Observation 11.

Proof: Let pi be an honest path through which S intended to send message $i.
On the contrary, assume that R received on path pi either:

1. One incorrect packet: This leads to a contradiction because if the packet was
correct up to q hops, our algorithm ensures that it is correct even after q+1
hops. Proof follows through induction.

2. No packet: As all the nodes on the path are honest it is clear that at least
one packet (viz. the packet routed through that path ($i, i)) will eventually
reach R. (Note that, however, R may not wait for this message.)

3. More than one packet: Since more than one packet was received on the honest
path pi (with the same path identifier), there exists at least one packet whose
path identifier was corrupted to i. Let N be the corrupted node where the

234 K. Srinathan, M.V.N. Ashwin Kumar, and C. Pandu Rangan

Routing Algorithm ∆async

Inputs: The sender S, receiver R, message $i to be routed through path pi, and the subset of
paths Φ(S,R) ⊂ Xpath(S,R) under consideration.
Code for the Sender S:
Send packet ($i, i) to node N , IF path pi = (S, N, . . . ,R) and pi ∈ Φ(S,R).
Code for an Internal Node N :
IF the packet ($i, i), where path pi = (S, . . . , N1, N2, N3, . . . ,R) and pi ∈ Φ(S,R), is received
from N1 and N2 == N , THEN send it to N3. ELSE throw away the packet ($i, i).
Code for the Receiver R:
For each pi ∈ Φ(S,R), initialize τi = `.
Let Srecd (initialized to ∅) keep track of the paths through which R receives.

IF R receives the packet ($i, i) from N`, where path pi = (S, . . . , N`,R)
THEN
Srecd ←− Srecd ∪ {pi}.
IF τi == `
THEN set τi = ($i, i).
ELSE set τi =⊥.

ELSE set τi =⊥. // i.e., when the message is received but not along pi.

Wait until Srecd ⊇ (Φ(S,R) \ ΛD) for some (ΛD, ΛE) ∈ A
[Φ]

path
(S,R).

Comment: If τi still remains as `, it means no messages were received on pi. If τi is ⊥, it means
that the message(s) received over pi are probably invalid and better not used.

Fig. 4. The Routing Algorithm for Asynchronous Networks.

path identifier was corrupted to i and sent to a honest node Nh in pi. ∆async

ensures that this packet is thrown away by Nh. Notice that the same holds
even when Nh = R. ut

5 Unconditionally Secure Communication with Broadcast

5.1 Impossibility

Theorem 3. Unconditionally secure message transmission tolerating A across
an asynchronous network N with broadcast capability is possible only if the sender
S and the receiver R are A(2,1)(S,R)-subconnected.

Proof: Assume that, on the contrary, secure transmission with negligible error
is possible even when S and R are not A(2,1)(S,R)-subconnected. In this case,
the adversary can exploit the asynchrony of the network and delay the messages
routed through the paths in ΛD for some class Λ = (ΛD, ΛE) ∈ AXpath(S,R).

Since S and R are not A(2,1)(S,R)-subconnected, there exists a class Λ′ such
that Λ′ = (Λ′D, Λ

′
E) ∈ A

X
path(S,R) such that ΛD∪Λ

′
D∪Λ

′
E = Xpath(S,R). Thus

by choosing to corrupt this class Λ′ the adversary has all the knowledge that R
takes into consideration thus violating the secrecy requirement. ut

5.2 Possibility

We propose a protocol sketch for unconditionally secure communication on the
lines of [8] and show that the A(2,1)(S,R)-connectivity condition is sufficient.

Asynchronous Secure Communication Tolerating Mixed Adversaries 235

Asynchronous Unconditionally Secure Transmission

1. S sends different ρSj , σ
S

j ∈ F on each path pj in Φ(S,R).

2. For each, ρRj , σ
R

j that R receives on the correct path pj , R reliably sends (using the broadcast

channel) a random νRj ∈ F and s
R

j = (ν
R

j · ρ
R

j + σ
R

j) to S.

3. S constructs G = {j|sRj = (ν
R

j · ρ
S

j + σ
S

j)}. S reliably sends (using the broadcast channel) G

and Z = mS +ΣG ρSj .

4. R computes mR = Z −ΣG ρRj .

Fig. 5. Unconditionally Secure Transmission with Broadcast.

Theorem 4. The protocol given in Fig. 5 is indeed a protocol guaranteeing un-
conditionally secure communication if the sender S and the receiver R are A(2,1)-
subconnected.

Proof of Secrecy: Since the network is asynchronous, the receiver can ex-
pect to receive messages only on paths in (Xpath(S,R) \ ΛD) (for some Λ =
(ΛD, ΛE) ∈ A

X
path(S,R). However, since S and R are A

(2,1)-subconnected, even
if the adversary corrupts some other class Λ′ = (Λ′D, Λ

′
E), there exists one path

ph on which the messages will reach R and has no corrupted (active or passive)
player. Hence, R receives the values ρSj and σ

S
j correctly. The adversary can not

find out the value ρSj even using s
R
j and ν

R
j . Hence the adversary can only guess

the value of mS even after knowing Z.
Proof of Resiliency: mS 6= mR if and only if ρSj 6= ρRj for some j ∈ G. This

occurs with a probability 1
|F| . Hence, Pr(m

S 6= mR) ≤ |G|
|F| , which can be made

sufficiently small since one could choose the working field such that |F| > |G|
δ

and still have the compute, round and communication complexity of the resul-
tant protocol polynomial in the size of the network, the size of the maximal basis
of the adversary structure and log 1

δ
(if δ > 0). ut

6 Unconditionally Secure Communication without

Broadcast

6.1 Impossibility

Theorem 5. Unconditionally secure message transmission tolerating A across
an asynchronous network N without broadcast capability is possible only if the
sender S and the receiverR are A(2,1)(S,R)-subconnected as well as A(3,0)(S,R)-
subconnected.

Proof: As a direct consequence of Theorem 3, S and R should be at least
A(2,1)(S,R)-subconnected for any secure communication protocol to satisfy the
secrecy condition. For the sake of contradiction, assume that there exists a
scheme ξ for unconditionally secure communication even when S and R are not
A(3,0)(S,R)-subconnected. Using ξ, we construct a protocol ξ ′ for uncondition-
ally secure communication between a sender S′ and a receiver R′ over a network

236 K. Srinathan, M.V.N. Ashwin Kumar, and C. Pandu Rangan

N ′, wherein S′ and R′ are connected by exactly three disjoint paths (p1, p2 and
p3), at least one of which is corrupted by a Byzantine adversary. However, in
this case, secure communication of any sort is impossible. The adversary can
delay the message through one of the paths so that R′ does not take it into
consideration. Then the adversary can corrupt one of the other two messages.
Thus R′ will have to reconstruct the secret using one of the two messages and in
a sense has exactly the same amount of information as the adversary. Since the
adversary should not get more information about the secret (than what he can
get by random guessing), unconditionally secure communication is not possible.
Construction of ξ′ from ξ is simple. Since, S and R are not A(3,0)(S,R)-

subconnected, there exist three classes Λ1 = (ΛD1
, ΛE1

), Λ2 = (ΛD2
, ΛE2

), Λ3 =
(ΛD3

, ΛE3
) in the path adversary structure such that ΛD1

∪ ΛD2
∪ ΛD3

=
Xpath(S,R). Construct scheme ξ

′ wherein, every message sent through a path in
ΛD1

in ξ is sent through the path p1 in ξ
′; every message sent through a path in

ΛD2
\ΛD1

in ξ is sent through the path p2 in ξ
′; and every message sent through

a path in ΛD3
\ (ΛD1

∪ ΛD2
) in ξ is sent through the path p3 in ξ

′. Hence, if ξ
is a protocol for unconditionally secure communication, so is ξ ′. ut

6.2 Possibility

We remark that the protocol for unconditionally secure communication in Fig. 5
will work even in this case, if we are able to simulate reliable but insecure
transmission. We provide below a protocol for the same (which we call Pub-

lic transmission) whenever the sender and receiver are at least A(3,0)(S,R)-
subconnected.

Public Transmission & Reception

Transmission: Sender S sends message m on all paths in Φ(S,R).
Reception: The receiver R receives on paths in Srecd = (Φ(S,R) \ ΛD) for some

(ΛD, ΛE) ∈ A
[Φ]

path
(S,R).

Let the receiver R receive m′i on path pi ∈ Srecd.

Set m′ = m′i such that ∃(Λ
′
D, Λ

′
E) ∈ A

[Φ]

path
(S,R), {j|m′j = m′i} ⊇ (Srecd \ Λ

′
D).

m′ is the publicly received message.
Comment: The publicly received message m′ is that message which is received through the
paths which form a set in the path access structure.

Fig. 6. Public Transmission and Reception.

Theorem 6. Reliable, yet insecure transmission is possible if and only if S and
R are A(3,0)(S,R)-subconnected.

Necessary: Assume the contrary. Then there exists classes Λ1, Λ2 and Λ3 such
that Λ1 ∪Λ2 ∪Λ3 = Xpath(S,R). The adversary slows down the messages in Λ1
and corrupts those in either Λ2 or Λ3. Note that R has no idea whether Λ2 is
corrupted or Λ3 is corrupted and can not decide whether messages through Λ2

Asynchronous Secure Communication Tolerating Mixed Adversaries 237

are correct or those through Λ3 are correct. Thus reliable transmission is not
possible.
Sufficient: See protocol in Fig. 6. Suppose S transmits a message m to R. Let
R receive m′. Assume that m′ 6= m. This would require the adversary to corrupt
the paths in ΛB = (Srecd \ Λ

′
D) = (Φ(S,R) \ (ΛD ∪ Λ

′
D)). Hence, ∃(Λ

′′
D, Λ

′′
E) ∈

A
[Φ]
path(S,R) such that Λ

′′
D ⊇ ΛB . This would imply that, ∃(ΛD, ΛE), (Λ

′
D, Λ

′
E),

(Λ′′D, Λ
′′
E) ∈ A

[Φ]
path(S,R) such that ΛD ∪ Λ

′
D ∪ Λ

′′
D = Φ(S,R). This leads to a

contradiction since S and R are A(3,0)(S,R)-subconnected. ut

7 Perfectly Secure Communication

7.1 Impossibility

Theorem 7. Perfectly secure message transmission tolerating A across an asyn-
chronous network N is possible only if the sender S and the receiver R are
A(2,1)(S,R)-subconnected as well as A(3,0)(S,R)-subconnected. This is irrespec-
tive of whether N has broadcast capabilities or not.

Proof: Assume for the sake of contradiction that there exists a scheme ξ for se-
cure message transmission of m ∈ F from S to R tolerating A across N not sat-
isfying either A(3,0)(S,R)-subconnectivity or the A(2,1)(S,R)-subconnectivity
condition. Also assume that each execution of ξ proceeds in phases, and that in
the odd phase the sender S sends messages to the receiver R while in an even
phase transmits to S.
Case 1– Violation of A(3,0)(S,R)-subconnectivity:
In this case, there exist three classes (ΛD1

, ΛE1
), (ΛD2

, ΛE2
), (ΛD3

, ΛE3
) ∈ AXpath(S,R)

such that ΛD1
∪ ΛD2

∪ ΛD3
= Xpath(S,R). Let m 6= m′ ∈ F . We construct two

executions, Ψ and Ψ ′ of ξ that, for every k, are indistinguishable to R after k
phases of communication. However, we construct the two executions in such a
way that in Ψ the message being transmitted ism, while in Ψ ′ the message being
transmitted is m′ thus proving that these executions cannot terminate, violating
the resiliency condition.
Assume that in phase 2i+1 of the execution of Ψ (or Ψ ′), S sends αi(respectively

αi
′) through the paths in ΛD1

, βi(respectively βi
′) through the paths in (ΛD2

\
ΛD1

) and γi(respectively γi
′) through the paths in (ΛD3

\ (ΛD1
∪ΛD2

)). The ad-
versary corrupts ΛD3

(respectively ΛD2
) in the execution of Ψ(respectively Ψ ′)

and delays the messages sent through paths in ΛD1
so that R will not consider

these messages. In each phase of the execution of Ψ(respectively Ψ ′), the adver-
sary corrupts the message γi(respectively βi

′) to γi
′(respectively βi). At the end

of the ith phase, R receives βi, γi
′ on paths in (ΛD2

∪ ΛD3
) \ ΛD1

in both the
executions. Clearly, the receiver cannot distinguish between the two executions,
violating the resiliency requirement. Note that the existence of a broadcast chan-
nel does not help.
Case 2– Violation of A(2,1)(S,R)-subconnectivity:
This means that there exist two classes (ΛD1

, ΛE1
), (ΛD2

, ΛE2
) ∈ AXpath(S,R)

238 K. Srinathan, M.V.N. Ashwin Kumar, and C. Pandu Rangan

such that ΛD1
∪ΛE1

∪ΛD2
= Xpath(S,R). Hence, by choosing the class (ΛD1

, ΛE1
)

from A and delaying the messages routed through paths in ΛD2
(so that R

doesn’t consider these messages), the adversary gains as much knowledge of the
message as does R violating the secrecy requirement.

The fact that the presence of a broadcast primitive leaves the condition
unaffected follows from Theorem 6 and the protocol (see Fig. 6) for simulating
broadcast. ut

7.2 Possibility

We show that the protocols in line with [5, 12], when modified to the asyn-
chronous and generalized mixed adversary setting, works correctly over any net-
work that is A(2,1)(S,R)-subconnected as well as A(3,0)(S,R)-subconnected. We
begin by describing a method for sharing and reconstructing a secret, which we
will denote as algorithm Υ (see Fig. 7). It is known that a polynomial sized
MSP8 [11]M = (F ,Md×e, ψ) can be constructed (preferably of size as small as

possible), corresponding to the adversary structure A
[X]
path(S,R) with the range

of ψ being Φ(S,R) and the target vector ~T = [1, 0, . . . , 0]. With these inputs, we
describe the sharing and reconstruction algorithm Υ in Fig. 7.

Our transmission protocol (see Fig. 8) runs in iterations. In each iteration
the sender S attempts the transmission of a random pad ρ by sending share $i

(constructed using Υ) along each path pi. Since, is not assured of hearing on
all the paths, R waits for messages on a subset of paths Srecd and attempts to
reconstruct the random pad ρ (using the reconstruction algorithm of Υ) from
the shares received. If R is not able to conclusively reconstruct a unique pad, R
publicly sends all the received messages to S. From these shares, S constructs
the set of faulty paths F . First S constructs the set Srecd, the paths on which
R actually received messages. Among these paths, S marks a path to be faulty
(and adds to the set F) if R had received a wrong message. Note that at least
one path is recognized as faulty, since otherwise the transmission of ρ would
have been successful, terminating the pad-agreement phase of the protocol. Now
S and R prune the adversary structure (as in the synchronous case) and restart
the protocol for a different pad ρ′. When the transmission of a pad ρ is successful,
R publicly sends OK upon which S sends Z = m⊕ρ publicly. The receiver
can get back m by m = Z ª ρ.

8 Every linear secret sharing scheme can be represented as a Monotone Span Program
defined as the triple (F ,M,=) where F represents a finite field, M is a d× e matrix
with entries in F , and = : {1 . . . d} → {P1 . . . Pn} is a function. Each row of the
matrix M is labeled by players in the sense that = assigns the label =(k) to the k-th
row of M , 1 ≤ k ≤ d. For A ⊂ {P1 . . . Pn}, MA denotes the matrix that consists
of all rows in M labeled by players in A. Let ~T ∈ Fe be the target vector. A MSP
is said to accept (or reject) a structure Z if ∀Z ∈ Z, there exists (does not exist,
respectively) a linear combination of the rows of MZ which equals ~T . An MSP is
said to correspond to an adversary structure Aadv if it rejects exactly Aadv. By the
size of an MSP, we mean the number of rows in M .

Asynchronous Secure Communication Tolerating Mixed Adversaries 239

Sharing & Reconstruction

Sharing: We arrive at the entity to be sent across each of the paths in Φ(S,R) in the following

three steps.

1. Computing the Secret Shares: Let ρ be the random pad to be agreed upon and ~s =
[ρ, ϕ1, ϕ2, . . . , ϕe−1] where all ϕi’s are random elements in F . The shares are constructed

as ~χ =M × ~s T and the share χj corresponds to path ψ(j) (label of the j
th row in M).

2. “Anonymization” and the packet construction: We convert each of the shares to be sent into
what we call self-identifying packets. Consider each share χj as a binary string of length lg |F|.
The packet $i corresponding to path pi is the base 3 number obtained as follows:
– Append the digit 2 to the binary strings representing each χj , to get a ternary string
denoted by χ′j .

– Concatenate all the χ′j ’s assigned to pi to get ($i)base 3 = χ′j1
◦ χ′j2 ◦ . . . ◦ χ

′
jk
=

χj1 ◦ 2 ◦ χj2 ◦ 2 ◦ . . . ◦ 2 ◦ χjk ◦ 2 where ∀j`, the label ψ(j`) = pi.

Reconstruction: The receiver undoes the transformations performed by S to obtain the original
shares ~χ. If all the shares are correct, then the receiver R can indeed reconstruct the secret as
follows:

1. For each set A ∈ A[Φ]
acc, find

~λA such that ~λA ×MA = ~T . (By the MSP definition, such a

(1× e) vector ~λA should exist.)

2. ρ = ~T × ~s T = ~λA ×MA × ~s
T = ~λA × ~χA.

Fig. 7. Algorithm for Sharing and Reconstruction.

Theorem 8. The transmission protocol given in Fig. 8 has the following prop-
erties: (1) The protocol provably terminates and runs in time polynomial in
(n+ |Aadv|). (2) The protocol satisfies the security requirements. (3) The over-
all message complexity of the protocol is polynomial in (n + |Aadv|). The proof
follows from the Lemma 1, Theorem 1, Lemma 2 and Lemma 3.

Lemma 1 (Termination). The transmission protocol will terminate in at most
|A| iterations.

Proof: We show that if an iteration did not successfully transmit the random
pad ρ, at least one faulty path will be detected. In each iteration, every path
can be classified as an OK path (R receives one message), or a talkative path (R
receives more than one message), or a silent path. The transmission of ρ will be
successful if all the messages received on the OK paths were correct and there
are no talkative paths. (We know that silent paths form a disruptive set in one of
the classes in the path adversary structure.) If there is even one talkative path
pi, it would be marked with τi =⊥ and hence be recognized by S as faulty. If
any one of the messages on the OK paths are wrong, this path will be recognized
as faulty since S reliably receives all the messages received by R (due to public

transmission). Therefore, in each unsuccessful iteration, at least one faulty
path is detected and thereby eliminated. Because of Pruning Step((b)&(c))

(see Fig. 8) the faulty path cannot occur in all the sets in A
[Φ]
path(S,R). This

would result in the elimination of at least one set from the path-adversary in
each iteration, because of Pruning Step(a). Hence, the algorithm will terminate

in at most |A
[Φ]
path(S,R)| = |A| iterations. ut

240 K. Srinathan, M.V.N. Ashwin Kumar, and C. Pandu Rangan

The Transmission Protocol

Inputs: m, Φ(S,R), A
[Φ]

path
(S,R), Algorithm Υ (see Fig. 7) and ∆async.

Stage 1:

Code for S:
Choose a random pad ρ ∈ F . Divide ρ into shares ~σ using the AlgorithmΥ . Send (using ∆) each
share σi on its corresponding path pi ∈ Φ(S,R).
Stage 2:

Code for R:
Let T := (τ1, τ2, . . . , τk) where τi is received on pi.

IF ∀Λ ∈ A[φ]
acc(S,R), the same value ` is reconstructed using Υ from shares in {τi|pi ∈ Λ}

THEN Assign ρ := ` and publicly send OK on all paths pi ∈ Φ(S,R).
ELSE Publicly send T on all paths pi ∈ Φ(S,R).
Stage 3:

Code for S:
IF OK received publicly in Step 2
THEN Publicly send Z = ρ⊕m to R.
ELSE DO

1. Receive T ′ = {τ1, . . . , τ|Φ(S,R)|} publicly and construct the set Srecd = {pi | τ
′
i 6=`}

2. Define the set of faulty paths F = {pj | σj 6= τ ′j , τ
′
j ∈ T

′, pj ∈ Srecd}.
3. Publicly send F to R.
4. Pruning Step:

(a) A
[Φ]

path
(S,R)←− {(ΛD, ΛE) | (ΛD, ΛE)∈A

[Φ]

path
(S,R), F ⊆ ΛD}.

Comment: Remove those sets from the path adversary structure which we know are
certainly not corrupted by the adversary.

(b) G = {p | p ∈ Φ(S,R), ∀(ΛD, ΛE) ∈ A
[Φ]

path
(S,R), p ∈ ΛD}.

Comment: Set G as the set of paths which we know are definitely corrupted.

(c) Set Φ(S,R) = (Φ(S,R) \G) and update A
[Φ]

path
(S,R).

5. REPEAT the protocol with the modified inputs and a new pad ρ′ ∈ F .

Code for R:
IF OK publicly sent to S in Stage 2
THEN receive Z publicly and compute m = Z ª ρ.

ELSE Publicly receive F . Perform the Pruning Step and locally modify A
[Φ]

path
(S,R) and

Φ(S,R). REPEAT the protocol with the modified inputs.

Fig. 8. Perfectly Secure Transmission Protocol over Asynchronous Networks.

Lemma 2 (Security). The protocol satisfies the resiliency and secrecy condi-
tions for perfectly secure message transmission.

Proof of Resilience: The proof of resilience is similar to the one for the
synchronous case. All that we need to prove is that whenever R is able to suc-
cessfully reconstruct a value of ρ′, then ρ′ = ρ, i.e., R always reconstructs the
correct value. We know that the path adversary structure satisfiesQ(3,0)∩Q(2,1).9

Exploiting the asynchrony of the network, the adversary can schedule the mes-

sages on the honest paths in some ΛD, where (ΛD, ΛE) ∈ A
[Φ]
path(S,R) and

corrupt messages in some other paths in Λ′D, where (Λ
′
D, Λ

′
E) ∈ A

[Φ]
path(S,R).

By the definition of the corresponding access structure, there exists an access
set ΛA = P \ (ΛD ∪ Λ

′
D). Clearly in our case, the messages R receives through

these paths are correct, i.e., they are the actual shares that S sent. Hence, se-
cret reconstructed using the MSP and this access set will be ρ, the pad that S
intended to send. R reconstructs the secret correctly if and only if the secrets

9 The notation Q(k,`) has the same meaning as defined in [7].

Asynchronous Secure Communication Tolerating Mixed Adversaries 241

reconstructed using all the sets in the access structure are the same. Hence, if
R successfully reconstructs the secret, surely the reconstructed pad will be ρ.

Proof of Secrecy:Let the secret message to be transmitted be m ∈ F . We
first observe that in each of attempted transmissions of a random pad ρ, the
adversary cannot “access” the secret (by definition of a MSP). Moreover, each
of the ρ used in an iteration is independent of all the previous pads and the
message m. Let r ∈ F be a random field element. We claim that for any View

V of A, V occurs with the same probability in a transmission of m as in a trans-
mission of m′ = m⊕ r. Consider the case when the transmission of the pad ρ is
successful. For the transmission of ρ, ~s = [ρ, ϕ1, . . . , ϕe−1] while during the trans-

mission of ρ′, ~s′ = [ρ′, ϕ′1, . . . , ϕ
′
e−1]. S sends Z = m⊕ ρ = m⊕ (~λ×M ×~s T) =

(m⊕ r)⊕ (r ⊕ (~λ×M × ~s T)) = (m′)⊕ (~λ×M × ~s′
T
) = m′ ⊕ ρ′. ut

Lemma 3 (Communication Complexity). Each iteration of the protocol
communicates polynomial in (n+ |A|) bits.

Proof: From Theorem 1, it is clear that total number of paths used in the trans-
mission protocol is polynomial in the size of A. In Stage 1 of every iteration,
we have, S sends O(|Φ(S,R)|) field elements to R. In Stage 2, R replies with

O((|Φ(S,R)|)2) field elements. Since size of Φ(S,R) is polynomial in the size of
A, the communication complexity of the protocol is polynomial in the size of
the input. ut

8 Conclusion

Network synchrony is a very difficult primitive to achieve in real-life, and more
so in the presence of Byzantine faults in the system. This work initiates and
completely characterizes the minimum connectivity requirements for secure com-
munication over completely asynchronous networks (see Table 1). Furthermore,
the choice of generalized mixed adversaries has meant that the necessary and
sufficient conditions for secure communication over incomplete asynchronous net-
works for a variety of adversarial settings is studied in an unified manner and
expressed in one-shot. The study of information-theoretically secure communi-
cation is far from closed. We have not considered the third kind of fundamental
faulty behaviour, viz. fail-stop faults. Another open thread yet to be explored is
to suitably adapt the protocols to (more practical) settings with lower amounts
of synchrony though not completely asynchronous. Such networks are called par-
tially synchronous networks. Yet another interesting setting is one in which the
players possess only a partial knowledge of the topology of the network. More
realistic adversary models are worth exploring and will have repercussions not
only to the secure communication problem but also in the field of secure mul-
tiparty computation. Extant adversary models characterize a deviant player as
either an honest player or a dishonest player. However, in real-life players being
“fairly honest” and “slightly dishonest” makes sense. Viewing the honesty of the

242 K. Srinathan, M.V.N. Ashwin Kumar, and C. Pandu Rangan

Perfect security Unconditional security Unconditional
with Broadcast

Threshold Adversary max(ta, tp)+2ta+1 [13] max(ta, tp) + 2ta + 1 2ta + tp + 1

Generalized
Adversary (A(3,0) & A(2,1)) (A(3,0) & A(2,1)) (A(2,1))

Table 1. Necessary and sufficient connectivity requirements for the possibility of secure communi-
cation between any two honest players over arbitrary asynchronous networks.

players with this fuzzy outlook is worth exploring. Furthermore, among the ef-
ficiency considerations, it would be worth investigating the direct-sum question
with respect to the communication as well as randomness complexities. More-
over, our protocols (for the perfect security case) are based on perfect linear
secret schemes. This work does not investigate the deployment of non-linear
secret sharing schemes that may prove to be more efficient (see [1]).

References

1. A. Beimel and Y. Ishai. On the power of nonlinear secret sharing. In 16th Annual

IEEE Structure in Complexity Theory, pages 188–202, 2001.
2. M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computations. In

25th ACM STOC, pages 52–61, 1993.
3. M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computation with
optimal resilience. In 13th ACM PODC, pages 183–192, 1994.

4. C. Blundo and D. R. Stinson. Anonymous secret sharing schemes. Discrete Applied

Mathematics, 77:13–28, 1997.
5. D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmis-
sion. JACM, volume 40, number 1, pages 17–47, 1993.

6. M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus
with one faulty process. JACM, volume 32, number 2, pages 374–382, 1985.

7. M. Fitzi, M. Hirt, and U. Maurer. General adversaries in unconditional multiparty
computation. In ASIACRYPT’99, volume 1716 of LNCS. Springer-Verlag, 1999.

8. M. Franklin and R. N. Wright. Secure communication in minimal connectivity
models. Journal of Cryptology, 13(1):9–30, 2000.

9. M. Hirt and U. Maurer. Player simulation and general adversary structures in
perfect multiparty computation. Journal of Cryptology, 13(1):31–60, April 2000.
Preliminary version appeared in 16th ACM PODC, pages 25–34, August 1997.

10. M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access
structure. In IEEE Globecom 87, pages 99–102. IEEE, 1987.

11. M. Karchmer and A. Wigderson. On span programs. In 8th IEEE Structure in

Complexity Theory, pages 102–111, 1993.
12. M.V.N. Ashwin Kumar, P.R. Goundan, K. Srinathan, and C.P. Rangan. On per-

fectly secure communication over arbitrary networks. In 21st ACM PODC, 2002.
13. H. Sayeed and H. Abu-Amara. Perfectly secure message transmission in asyn-

chronous networks. In 7th IEEE Symposium on Parallel and Distributed Process-

ing, 1995.

