
A Variant of the Cramer-Shoup Cryptosystem

for Groups of Unknown Order

Stefan Lucks

Theoretische Informatik, Universität Mannheim, 68131 Mannheim, Germany
lucks@th.informatik.uni-mannheim.de

Abstract. The Cramer-Shoup cryptosystem for groups of prime order
is a practical public-key cryptosystem, provably secure in the standard
model under standard assumptions. This paper extends the cryptosys-
tem for groups of unknown order, namely the group of quadratic residues
modulo a composed N . Two security results are: In the standard model,
the scheme is provably secure if both the Decisional Diffie-Hellman as-
sumption for QRN and the factorisation assumption for N hold. In the
random oracle model, the scheme is provably secure under the factorisa-
tion assumption by a quite efficient reduction.

1 Introduction

Security against chosen ciphertext attacks is essential for many cryptosystems.
Naor and Yung [11] introduced this notion into the world of public-key cryptosys-
tems and first described a scheme secure against non-adaptive chosen ciphertext
(“lunchtime”) attacks. Today, most cryptographers agree that a “good” public-
key cryptosystem should be secure against adaptive chosen ciphertext (ACC)
attacks.1 This notion has been introduced by Rackoff and Simon [12]. Dolev,
Dwork and Naor [9] described a scheme provably secure against ACC attacks
under standard assumptions. However, their scheme is too inefficient for practical
applications. The research for provably secure and practically efficient cryptosys-
tems has led to schemes provably secure in the random oracle model [2], and to
schemes provably secure under non-standard assumptions such as the “oracle
Diffie-Hellman” assumption [1].

The Cramer-Shoup cryptosystem [5] is the only cryptosystem known to be
both practical and provably secure under standard assumptions – mainly, the
decisional Diffie-Hellman assumption in groups of prime order. Recently, the
same authors proposed a generalisation of their cryptosystem [7]. Its security
can be based either on Paillier’s decision composite residiosity assumption or on
the (quite classical) quadratic residuosity (QR) assumption – or on the decisional
Diffie-Hellman assumption in groups of prime order, as before. As pointed out in

1 Some authors denote lunchtime attacks by “IND-CCA1” and ACC attacks by “IND-
CCA2”.

28 S. Lucks

[7], the QR-based variant of the generalisation is not too efficient in practice.2 In
this paper, we deal with another variation, based on the Diffie-Hellman problem
in specific groups of non-prime order.
Set N = PQ, P = 2p + 1, Q = 2q + 1, p 6= q, and let P , Q, p, and q be

odd primes. In the remainder of this paper, we assume N to be of that form.
Consider the group QRN of the Quadratic Residues mod N and the Cramer-
Shoup Cryptosystem in this group. ([5] originally proposed their cryptosystem
for groups of prime order only.) As it will turn out, the legal user will not
need to know the factorisation of N for either encryption, decryption or key
generation (with the possible exception of generating an appropriate N itself).
Since knowing the factorisation of N is equivalent to knowing the order of QRN ,
the group QRN may be of unknown order even for the legal user.
A security result in the standard model provides assurance against all attacks,

while a random oracle security result only provides assurance against so-called
“generic” attacks. On the other hand, it is desirable to base the security of
cryptosystems on weak assumptions, instead of strong ones. In this spirit, Shoup
[13] proposed a “hedged” variant of the Cramer-Shoup cryptosystem, being both
provably secure in the standard model under a strong assumption and provably
secure in the random oracle model under a weak assumption. In Section 7, we
follow the same approach. Our extension is different from Shoup’s technique,
and the proof for the security in the random oracle model given here is more
efficient than its counterpart in [13].

2 Properties of the Set QRN

In this section, we recall some number-theoretic terminology and facts. Let G
be a finite multiplicative group of the order |G| ≥ 2. The order ord(x) of x ∈ G
is the smallest integer e > 0 such that xe = x0. G is cyclic, if a generator g for
G exists, i.e., an element g ∈ G with ord(x) = |G|. Further, {1} and G itself are
the two trivial subgroups of G, all other subgroups are nontrivial.
Recall that N = PQ, where P = 2p + 1, Q = 2q + 1, p and q are primes

(i.e., both p and q are Sophie-Germain primes). Consider the set QRN = {x ∈
ZZ∗N | ∃a ∈ ZZ

∗
N : a2 ≡ x (modN)} of Quadratic Residues modulo N . In the

sequel, we use the following lemmas, which we prove in Section A of the appendix.

Lemma 1. QRN has a nontrivial subgroup of order p and a nontrivial subgroup
of order q. Both subgroups are cyclic.

Lemma 2. QRN is cyclic. It consists of one element of the order 1, (p − 1)
elements of the order p, (q − 1) elements of the order q, and (p − 1)(q − 1)
elements of the order pq.

2 A sample instantiation of the security parameters with N ≈ 21024 in [7] implies the
following: A public key needs 70KB of storage space, and an encryption operation
needs about 600 exponentiations modulo N . Note that the other variants are much
more efficient.

A Variant of the Cramer-Shoup Cryptosystem 29

Lemma 3. For every x ∈ QRN : ord(x) ∈ {p, q} ⇒ gcd(x− 1, N) ∈ {P,Q}.

Lemma 4. Let g be a generator for QRN . For every x ∈ ZZpq: ord(g
x) ∈

{p, q} ⇔ gcd(x, pq) ∈ {p, q}.

Computations in QRN are computations modulo N . If it is implied by context,
we omit writing explicitly “modN” for calculations mod N . If S is a finite
set, we write v ∈

R
S if the value v is chosen from the set S according to the

uniform probability distribution. We write x ∈
R
ZZpq for randomly choosing x

in ZZpq according to a distribution statistically indistinguishable from uniform.
Consider, e.g., x ∈

R
ZZbN/4c. Since bN/4c ≤ pq + p/2 + q/2 + 1/4, x ∈ ZZpq is

overwhelmingly probable: Pr[x ∈ ZZpq] ≥ 1−
p+q
2pq ≥ min{1−

1
p , 1−

1
q}.

3 Key Encapsulation Mechanisms

A key encapsulation mechanism (KEM) can be seen as the secret-key part of a hy-
brid cryptosystem. Combining a KEM with an appropriate secret-key cryptosys-
tem provides the functionality of a public-key cryptosystem. If the secret-key
cryptosystem satisfies some fairly standard security assumptions and the KEM
is secure against ACC attacks, the public-key cryptosystem is secure against
ACC attacks as well. (This is called a “folk theorem” in [13]. See also [6].) A
KEM is a triple (Gen, KE, KD) of algorithms:

1. A key pair generation algorithm Gen, which, given a security parameter,
randomly chooses a public-key/secret-key pair (PK,SK).

2. A randomised key encapsulation algorithm KE to choose (C,K)=KE(PK),
i.e. a ciphertext C and an encapsulated key K.

3. A deterministic key decapsulation algorithm KD to computeK ′=KD(SK,C),
and to reject invalid ciphertexts.

A KEM is sound, if K = K ′ for any (PK,SK)=Gen(·), (C,K)=KE(PK), and
K ′=KD(SK,C). The KEM presented in Section 4 and its extension in Section 7
are both sound. Proving this is easy, but omitted here for the sake of space.
An ACC attack against a KEM (Gen, KE, KD) can be described by the

following game:

1. A key generation oracle computes (PK,SK)=Gen(·) and publishes PK.
2. A key encapsulation oracle chooses (C,K)=KE(PK) and σ ∈

R
{0, 1}. If σ =

0, the oracle sends (C,K) to the adversary, else (C,K ′) with K ′ ∈
R
{0, 1}|K|.

3. The adversary makes some queries C1, . . . , Cq to a key decapsulation oracle,
with Ci 6= C. For each query Ci, the oracle responds the value KD(SK,Ci),
which may be either a bit string, or a special code to indicate rejection. For
i ∈ {1, . . . , q − 1}, the adversary learns the response KD(SK,Ci) before she
has to choose the next query Ci+1.

4. The adversary outputs a value σ′ ∈ {0, 1}.

30 S. Lucks

The adversary’s advantage in guessing σ is the difference

∣

∣pr[σ′ = 1|σ = 1]− pr[σ′ = 1|σ = 0]
∣

∣

of conditional probabilities. A KEM is secure against ACC attacks, or ACC-
secure if, for all efficient adversaries, the advantage is negligible.
In Section B of the appendix, we compare ACC-secure KEMs with ACC-

secure public-key cryptosystems and introduce lunchtime-security.

4 The Cryptosystem and some Assumptions

Here, we deal with the Cramer-Shoup cryptosystem and what assumptions we
make to prove its security. Cramer and Shoup [5] considered groups G of (known)
prime order q∗, while we consider the group QRN of composed order pq. There
is no need to actually know pq, not even for the owner of the secret key. (Note
that knowing pq makes factorising N easy.) For the sake of simplicity, we restrict
ourselves to describing the system as a key encapsulation mechanism, instead of
a full scale public-key cryptosystem.

Cramer-Shoup cryptosystem in the group QRN :

– Key Generation Gen(l):
• Generate N , P , Q, p, q as above with 2l−1 < N < 2l.
Choose a generator g for QRN .

• Choose a hash function H : {0, 1}∗ → ZZm (with m ≤ pq).
• Randomly choose w ∈

R
ZZpq, and compute g2 = gw. Choose x1, x2, y1,

y2, z ∈R
ZZpq. Compute c = gx1gx2

2 , d = gy1gy2

2 , and e = gz.
• The public key is PK=(N , g, H, g2, c, d, e).
The secret key is SK=(x1, x2, y1, y2, z) in ZZ

5
pq.

– Key Encapsulation KE(PK):
• Choose r ∈

R
ZZpq, compute u1 = gr, u2 = gr2, k = er, α = H(u1, u2) and

t = crdrα.
• The ciphertext is (u1, u2, t), the encapsulated key is k.

– Key Decapsulation3 KD(SK,(U1, U2, T)) for (U1, U2, T) ∈ QR
2
N × ZZ

∗
N :

• Compute K ′ = Uz
1 , A

′ = H(U1, U2), T
′ = Ux1+y1A

′

1 Ux2+y2A
′

2 .
• If T = T ′ then output K ′, else reject.

Both in a group G of prime order and in composed order groups (such as QRN

and ZZ∗N), expressions such as g
a∗gb and (ga)b are equivalent to ga+b and gab. For

prime order groups “a + b” and “ab” are addition and multiplication in a field,
but for general groups G these operations are defined in the ring ZZ|G|. Thus, the
proof of security from [5] is not directly applicable to the cryptosystem proposed
in the current paper, though our proof is along the same lines.

3 We don’t care if T 6∈ QRN , because T ′ ∈ QRN , and the test “T = T ′” is supposed
to fail if T 6∈ QRN . Remark 3 describes how to enforce U1, U2 ∈ QRN .

A Variant of the Cramer-Shoup Cryptosystem 31

Assumption: (Target collision resistance of H)
Let FH be a family of hash functions {0, 1}

∗ → ZZm, for m ≤ pq. Consider the
following experiment:
1. Fix an input T for H (the “target”).
2. Randomly choose H from the family FH .

It is infeasible to find a “collision” for the target T , i.e., an input T ′ 6= T such
that H(T) = H(T ′).
As a minor abuse of notation, we write “H is target collision resistant” (“TC-
resistant”) to indicate that H has been chosen from such a family FH .

Assumption: (decisional Diffie-Hellman (DDH) assumption for QRN)
Let a generator g for QRN be given. Consider the distributions R of triples
(g2, u1, u2) ∈R

QR3
N and D of triples (g2, u1, u2) with g2 ∈R

QRN , r ∈R
ZZpq,

u1 = gr, and u2 = gr2. It is infeasible to distinguish between R and D. 4

Assumption: (computational Diffie-Hellman (CDH) assumption for QRN)
Let a generator g for QRN be given. Given two values g2 ∈R

QRN and u1 ∈R

QRN with logg(u1) = r, it is infeasible to find the value u2 = gr2.
5

Assumption: (factoring assumption for N)
Given N , it its infeasible to find P or Q.

Theorem 1 (Factoring assumption ⇒ CDH assumption).
If the factoring N is infeasible, the CDH assumption for QRN holds.

The proof is in Section C of the appendix.

5 Some Technicalities

Lemma 5. Let g be a generator of QRN and w ∈
R
ZZpq. The value g2 = gw is a

uniformly distributed random value in QRN . With overwhelming probability, g2

is a generator for QRN .

Proof. Clearly, g2 is uniformly distributed. By Lemma 4, g2 is a generator for
QRN ⇔ w ∈ ZZ∗pq. Hence, pr[g2 is a generator for QRN] = (p− 1)(q− 1)/pq. ut

Lemma 6. If it is feasible to find any pair (α, β) ∈ ZZpq with (α − β) ∈ ZZpq −
ZZ∗pq − {0}, it is feasible to factorise N .

4 An alternative view would be to consider two distributions D4 and R4 of quadruples
(g, g2, u1, u2). The distribution of g is the same for D4 and R4, and g is a generator.
Apart from that, we don’t specify how g is actually chosen. The values g2, u1 and
u2 are either chosen according to D, or according to R.

5 Since g ∈ QRN is a generator, logg(x) is uniquely defined for x ∈ QRN .

32 S. Lucks

Proof. Let g be a generator for QRN . If (α − β) ∈ ZZpq − ZZ
∗
pq − {0}, then

ord(gα−β) ∈ {p, q} and thus, we can compute gcd(gα−β − 1, N) ∈ {P,Q}. ut

Lemma 7. Let g be a generator for QRN and g2 ∈R
QRN . If it is feasible to

choose u1, u2 such that u1 = gr1 , u2 = gr22 , and (r2 − r1) ∈ ZZpq − ZZ
∗
pq − {0}, it

is feasible to factorise N .

Proof. Choose g2 as suggested in Lemma 5: w ∈R
ZZpq; g2 = gw. Since (r2−r1) ∈

ZZpq − ZZ
∗
pq − {0}, ord(g

r2−r1) ∈ {p, q}. Similarly, ord(gr2−r1
2) ∈ {p, q}, and thus

gcd(gr2−r1
2 , N) ∈ {P,Q}. Due to gr2−r1

2 = gr22 /gr12 = u2/u
w
1 , and since we know

w, we actually can compute gr2−r1
2 and thus factorise N . ut

Now we describe a simulator for the Cramer-Shoup cryptosystem. Its purpose is
not to be actually used for key encapsulation and decapsulation, but as a tech-
nical tool for the proof of security. If an adversary mounts an attack against the
Cramer-Shoup cryptosystem, the simulator may provide the responses, instead
of an “honest” Cramer-Shoup oracle. Note that the adversary can make many
key decapsulation queries, but only one single key encapsulation query.

A Simulator for the Cramer-Shoup Cryptosystem in QRN :

– Generate the public key:
• Let the values g, N and H and a triple (g2, u1, u2) ∈ QR

3
N be given.

• Choose x1, x2, y1, y2, z1, z2 ∈R
ZZpq. Compute c = gx1gx2

2 , d = gy1gy2

2 ,
and e = gz1gz22 .

6 The public key is PK=(N , g, H, g2, c, d, e).
– Key Encapsulation KE(PK):

• Compute k = uz1
1 uz2

2 , α = H(u1, u2), t = ux1+y1α
1 ux2+y2α

2 .
• The ciphertext is (u1, u2, t), the encapsulated key is k.

– Key Decapsulation KD(SK,(U1, U2, T)):

• Compute K ′ = Uz1
1 Uz2

2 , A
′ = H(U1, U2), T

′ = Ux1+y1A
′

1 Ux2+y2A
′

2 .
• If T = T ′ then output K ′, else reject.

6 A Proof of Security in the Standard Model

In this section, we prove the security of the Cramer-Shoup Cryptosystem in
QRN in the standard model. The proof is based on three lemmas.

Theorem 2 (Security in the standard model).
If H is TC-resistant and both the DDH assumption for QRN and the factoring
assumption for N hold, the Cramer-Shoup cryptosystem in QRN is ACC-secure.

Lemma 8. If the triple (g2, u1, u2) given to the simulator is distributed accord-
ing to distribution D, an adversary cannot statistically distinguish between the
behavior of the simulator and the Cramer-Shoup cryptosystem itself.

6 In contrast to the simulator, the cryptosystem itself implicitly defines z2 = 0.

A Variant of the Cramer-Shoup Cryptosystem 33

Proof. If (g2, u1, u2) is distributed according to D, a value r exists such that
u1 = gr and u2 = gr2. We show that the simulator’s responses are statistically
indistinguishable from the real cryptosystem’s responses.
Consider the key encapsulation query. The simulator computes

k = uz1
1 uz2

2 = grz1grz22 = (gz1gz22)
r = er,

α = H(u1, u2) and

t = ux1+y1α
1 ux2+y2α

2 = grx1+ry1αgrx2+ry2α
2 = grx1grx2

2 gry1αgry2α
2 = crdrα.

The distribution of the response ((g2, u1, u2), k) is identical to the distribution
of the cryptosystem’s response.
Now consider the key decapsulation queries. If a query (U1, U2, T) is valid, i.e.,

if a value R ∈ ZZpq exists with U1 = gR and U2 = gR2 , the simulator’s response is
the same as the response the cryptosystem provides. Both the simulator and the

cryptosystem reject (U1, U2, T) if T 6= T ′ = Ux1+y1A
′

1 Ux2+y2A
′

2 , and else output
K ′ = Uz1

1 Uz2
2 = (gR)z1(gR2)

z2 = (gz1gz22)
R = eR. It remains to show that both

the cryptosystem and the simulator (given (g2, u1, u2) distributed according to
D) reject all invalid key decapsulation queries with overwhelming probability –
and thus essentially behave identically.
The decision to reject an invalid ciphertext (U1, U2, T) depends on four ran-

dom values x1, x2, y1, y2 ∈ ZZpq. A part of the public key are the values c and d
with c = gx1gx2

2 = gx1gwx2 and d = gy1gy2

2 = gy1gwy2 , i.e.,

lc := logg(c) = x1 + wx2 ⇐⇒ x1 = lc − wx2 and (1)

ld := logg(d) = y1 + wy2. ⇐⇒ y1 = ld − wy2 (2)

These equations7 provide public information about the quadruple (x1, x2, y1, y2)
of secret values. The response to the encapsulation query provides another equa-
tion logg(t) = rx1 + ry1α + rwx2 + rwy2α, however logg(t) = rlc + rldα, i.e.,
this new equation linearly depends on Equations 1 and 2, and thus provides no
new information about (x1, x2, y1, y2). This still leaves (pq)

2 possibilities for the
quadruple (x1, x2, y1, y2).
Assume g2 to be a generator for QRN . (By Lemma 5, this is overwhelmingly

probable.) Let the ciphertext (U1, U2, T) be invalid. Thus, R1 6= R2 exist with
U1 = gR1 and U2 = gR2

2 . To answer the query, the values K
′ = Uz1

1 Uz2
2 (or K ′ =

Uz
1), A

′ = H(U1, U2), and T ′ = Ux1+y1A
′

1 Ux2+y2A
′

2 = gR1x1+R1y1A
′

gR2x2+R2y2A
′

2

are computed, which provides the equation

lT ′ := logg(T
′) = R1x1 +R1y1A

′ + wR2x2 + wR2y2A
′. (3)

Equations 1 and 2 can be used to eliminate the variables x1 and y1:

lT ′ = R1lc −R1wx2 +R1ldA
′ −R1wy2A

′ + wR2x2 + wR2y2A
′

= R1lc +R1ldA
′ + wx2(R2 −R1) + wy2A

′(R2 −R1)

7 It is vital that lc and ld are uniquely defined. We need not actually compute lc or ld.

34 S. Lucks

By Lemma 5 and Lemma 7 we know that with overwhelming probability and
under the factoring assumption both w and (R2 − R1) are invertible mod pq.
If these two values are invertible, we may fix the value y2 arbitrarily and there
always exists a uniquely defined value

x2 =
lT ′ −R1lc −R1A

′ld − wy2A
′(R2 −R1)

w(R2 −R1)

to prevent the rejection of the invalid ciphertext (U1, U2, T). Each time an invalid
ciphertext is rejected, this eliminates at most pq of the (pq)2 possible quadruples
(x1, x2, y1, y2). ut

Lemma 9. If the triple (g2, u1, u2) ∈ QR
3
N given to the simulator is distributed

according to distribution R, the simulator rejects all invalid ciphertexts with over-
whelming probability.

Proof. Recall that the rejection of an invalid ciphertext (U1, U2, T) depends on
the quadruple (x1, x2, y1, y2) ∈ QRN of secret values, and that the public key
provides the two linear Equations 1 and 2 to narrow down the number of pos-
sibilities for (x1, x2, y1, y2) to (pq)

2. The response to the encapsulation query
provides the value t = ux1+y1α

1 ux2+y2α
2 and thus a linear equation

lt := logg(t) = r1x1 + r1y1α+ wr2x2 + wr2y2α. (4)

By using Equations 1 and 2, we can eliminate the variables x1 and y1:

lt = r1lc − r1wx2 + r1ldα− r1wx2α+ wr2x2 + wr2y2α

= r1lc + r1ldα+ wx2(r2 − r1) + wy2α(r2 − r1)

⇒ y2 =
lt − r1lc − r1ld − wx2(r2 − r1)

w(r2 − r1)α

An invalid ciphertext (U1, U2, T) is rejected, except when Equation 3 holds,
which means T ′ = T . Recall α = H(u1, u2) and A′ = H(U1, U2) and consider
three cases:

– Case 1, (U1, U2) = (u1, u2): By the definition of an ACC attack, we require
t 6= T , and thus the key decapsulation query (U1, U2, T) will be rejected.

– Case 2, (U1, U2) 6= (u1, u2) and α = A′: This is a collision for H for the tar-
get (u1, u2), which contradicts the assumption for H to be TC-resistant.

– Case 3: (U1, U2) 6= (u1, u2) and α 6= A′: We have four unknowns x1, x2, y1, y2

∈ QRN , and four Equations 1, 2, 3, and 4 describe their relationship. By
solving this system of linear equations we get

y2 =
lT ′ − r1lc −

lt−r2lc−r1ldα
r2−r1

(R2 −R1)−A′R1ld

(R2 −R1)w(A′ − α)
,

which uniquely determines y2 if all the four values (r2 − r1), (R2 − R1),
w, and (A′ − α) are invertible in ZZpq.

8 The invertibility of (r2 − r1) and
(R2−R1) follows from Lemma 7, the invertibility of w follows from Lemma
5, and the invertibility of (A′ − α) follows from Lemma 6. ut

8 This implies that the four linear equations 1, 2, 3, and 4 are linearly independent.

A Variant of the Cramer-Shoup Cryptosystem 35

Lemma 10. Let k be the encapsulated key in the response for the encapsulation
query. If the triple (g2, u1, u2) ∈ QR

3
N given to the simulator is distributed ac-

cording to distribution R, it is infeasible for the adversary to distinguish between
k and a uniformly distributed random value.

Proof. We set r1 = logg(u1) and r2 = logg2
(u2). Assume that g2 = gw is a

generator for QRN and that r1 6= r2. Both assumptions hold with overwhelming
probability. Now we prove: If all invalid decapsulation queries are rejected dur-
ing the simulation, then under the factoring assumption it is infeasible for the
adversary to distinguish between k and a random value.
Observe that k only depends on the two random values z1, z2 ∈ QRN . Since

e = gz1gz22 , the public key provides one linear equation

le := logg(e) = z1 + wz2 ⇐⇒ z1 = le − wz2. (5)

The rejection of an invalid key decapsulation query does not depend on z1 and
z2. If the decapsulation query (U1, U2, T) is valid and not rejected, we have a
value R such that U1 = gR and U2 = gR2 . By logg(k) = Rz1 +Rwz2 = R logg(e)
this provides another equation, linearly depending on Equation 5. The response
for the key encapsulation query consists of a ciphertext (u1, u2, t) and a key
k = uz1

1 uz2
2 = gr1z1gwr2z2 , which provides a linear equation

lk := logg(k) = r1z1+wr2z2 = r1le− r1wz2+ r2wz2 = r1le+wz2(r2− r1), (6)

which finally gives

z2 =
lk − r1le

w(r2 − r1)
.

As before, we argue that with overwhelming probability and under the factoring
assumption both w and (r2 − r1) are invertible in ZZpq. If w and (r2 − r1) are
invertible, then a unique value z2 exists for every key k ∈ QRN . ut

Proof (Theorem 2). If the adversary can break the cryptosystem by distinguish-
ing a real encapsulated key from a random one, she can do so as well in the
simulation, if the simulator input is chosen according to distribution D (Lemma
8). Since she cannot distinguish a real key from a random key in the simulation
if the simulator input is distributed according to R (Lemmas 9 and 10), being
able to break the cryptosystem means being able to distinguish distribution D
from distribution R, contradicting the DDH assumption for QRN . ut

Remark 1 (Strengthening Theorem 2 by avoiding the factoring assumption).
IfH is TC-resistant and the DDH assumption for QRN holds, the Cramer-Shoup
Cryptosystem in QRN is ACC-secure.

To verify this, assume that the adversary somehow learns the factors P and Q
of N . Then the DDH-problem for QRN is hard if and only if both the DDH
problem for QRP and the DDH problem for QRQ are hard. But given P and Q
and an oracle to mount an ACC-attack against the Cramer-Shoup Cryptosystem
for QRN , we can use this oracle to solve the DDH problem for either QRP or
QRQ. In this case, the DDH problem for QRN is feasible.

36 S. Lucks

7 An Extension and its Security

We describe how to extend the Cramer-Shoup cryptosystem, dealing with a hash
function h, which may be used like a random oracle (→ Figure 1):

7.1 The Extended Scheme and its Abstract Security

Cramer-Shoup cryptosystem in QRN with h-extension:

– The key pair (PK, SK) is the same as for the non-extended Cramer-Shoup
cryptosystem. Let h be a function h : {1, 2, 3} ×QR3

N → QRN .
– Extend key encapsulation by computing

t∗ = t ∗ h(1, k, u1, u2) (→ solid arrows in Figure 1) and
τ = t ∗ h(2, k, u1, u2) and k∗ = k ∗ h(3, τ, u1, u2) (→ dashed arrows).
The ciphertext is (u1, u2, t∗), the encapsulated key is k∗.

– Decapsulate the ciphertext (U1, U2, T∗) ∈ QR
2
N × ZZ∗N by computing K ′,

T ′ as before, and reject if T ′ ∗ h(1,K ′, U1, U2) 6= T∗. Else compute τ ′ =
T ′ ∗ h(2,K ′, U1, U2) and output K

′
∗ = K ′ ∗ h(3, τ ′, U1, U2).

∗

∗

∗

?

¾

?

¾

?

¾¾

- -

?

-

t k

τ

t∗ k∗

h(1, ...)

h(2, ...)

h(3, ...)

Fig. 1. The h-extension: converting t and k into t∗ and k∗.

Theorem 3 (Security of h-extended scheme in standard model).
Let h be any efficient function h : {1, 2, 3}×QR3

N → QRN . If H is TC-resistant
and both the DDH assumption for QRN and the factoring assumption for N
hold, the Cramer-Shoup cryptosystem in QRN is ACC-secure.

Proof. Observe that the simulator described in Section 5 computes the values k
and t when dealing with an encapsulation query. Also, being asked to decapsulate
the ciphertext (U1, U2, T), the same simulator computes the values K ′ and T ′

from U1 and U2. Thus, it is straightforward to apply the h-extension to the
simulator. Since h is efficient, the extended simulator is efficient, too.
Using the extended simulator instead of the original one, the proof for The-

orem 2 is applicable to Theorem 3. ut

Theorem 4 (Security of h-extended scheme in random oracle model).
If the function h is modeled as a random oracle, the h-extended scheme is ACC-
secure under the factoring assumption.

A Variant of the Cramer-Shoup Cryptosystem 37

Proof. Let N and H be given. Consider an adversary with a non-negligible
advantage to win the attack game. In the following experiment, we modify the
key generation and we describe how to respond to the adversary’s oracle queries,
including queries to the random oracle. We start with the key generation:

– Choose β ∈
R
{1, . . . , bN/4c − 1}, α ∈

R
ZZ∗N and compute e := α2.

– Choose u1 ∈R
QRN and compute g := u2β

1 . (We will search for k = elogg(u1),
i.e., for the value k with k2β = e. If we find k, we have a 50% chance that
gcd(kβ − α,N) ∈ {P,Q} holds, providing us with the factorisation of N .)

– Choose w ∈
R
ZZpq and compute g2 = gw and u2 = uw

1 .
– Choose x1, x2, y1, y2 ∈R

ZZpq and compute c = gx1gx2

2 and d = gy1gy2

2 .
– Use (N, g,H, g2, c, d, e) as the public key.

The response to the key encapsulation query is the ciphertext (u1, u2, t∗) and
the encapsulated key k∗ with t∗, k∗ ∈R

QRN .

Let (U1, U2, T∗) be a key decapsulation query. We respond as follows:

– Compute T ′ = Ux1+y1A
′

1 Ux2+y2A
′

2 .
– Consider values K ′ with queries for δ1 = h(1,K ′, U1, U2) to the random
oracle. Verify, if for one such value K ′ the equation

(K ′)2β = U1 (7)

holds. If not, or if T∗ 6= T ′ ∗ δ1, then reject.
– Else ask the random oracle for δ2 = h(2,K ′, U1, U2), compute τ = T ′ ∗ δ2,
ask for δ3 = h(3, τ, U1, U2), and respond K ′

∗ = K ′ ∗ δ3 to the adversary.

A random oracle query to compute h(I,X,U1, U2) (with I ∈ {1, 2, 3} and X,
U1, U2 ∈ QRN) may be asked either by the adversary, or by ourselves when
answering a key decapsulation query. The answer is computed as follows:

1. If we have been asked for h(I,X,U1, U2) before, repeat the same answer.
2. Else, if I ∈ {1, 2}, u1 = U1, u2 = U2, and X2β = e, print X and abort.
3. Else choose Y ∈

R
QRN and respond Y .

Observe that if we never abort (→ Step 2), the adversary cannot distinguish h
from a random function over the same domain. On the other hand, assume that
we abort the experiment, having found a value X with X2β = e, i.e., a square
root (mod N) of e. Initially, we know two square roots of e, namely ±α. Since
the adversary has no information about α, except for e = α2, Xβ 6= ±α holds
with probability 1/2. In this case, we can factorise N by computing gcd(Xβ −
α,N) ∈ {P,Q}. This shows: If π is the probability to abort the experiment, we
can factorise N with the probability π/2 after running the experiment once.
Now, we deal with three different games:

1. The attack game with the “real” encapsulated key k∗,
2. the attack game where k∗ is replaced by a random value, and
3. the experiment we defined for the current proof.

38 S. Lucks

As it turns out, the adversary cannot distinguish the experiment from either
of the attack games, except when we abort the experiment:

– The public key values g, g2, c, d, and e are independent uniformly distributed
random values in QRN – in the attack games, as in the experiment.

– In the attack games, the values u1 and u2 from the encapsulation query

satisfy the equation u2 = g
logg(u1)

2 , with u1 ∈R
QRN . For one of the attack

games, the values t∗ and k∗ depend on t and k (and h), while for the other
one, t∗ depends on t and k, while k∗ is chosen at random.

In the experiment, u1 ∈R
QRN and u2 = g

logg(u1)

2 as well. The value t∗
cannot be distinguished from a uniformly distributed random value without
asking for h(1, k, u1, u2) (and then aborting). The value k∗ cannot be dis-
tinguished without asking for h(3, τ, u1, u2). Asking this query is infeasible
without having asked for δ2 = h(2, k, u1, u2) (followed by an abortion), since
τ depends on δ2.

– Consider a decapsulation query (U1, U2, T∗). Let K ′ be defined by Equa-
tion 7. If h is a well-defined function, there is a unique well defined value
T ′
∗ such that a ciphertext (U1, U2, T

′
∗) has to be accepted, and every ci-

phertext (U1, U2, T∗) with T∗ 6= T ′
∗ has to be rejected. Without asking

for h(1,K ′, U1, U2), the adversary cannot predict T ′
∗, and any ciphertext

(U1, U2, T∗) chosen by the adversary is rejected with overwhelming probabil-
ity in the attack games and with probability 1 in the experiment.
If the adversary had asked for h(1,K ′, U1, U2), the computation of T

′
∗ and

K ′
∗ is exactly the same in the experiment as in the attack games. ut

7.2 The Concrete Security of the Extended Scheme

Note that the reduction in the proof of Theorem 4 is very efficient. We quantify
this by describing the concrete security against a generic adversary, i.e., against
an adversary who treats the hash function h like a random oracle.

Theorem 5 (Concrete security of h-extended scheme in r. o. model).
Let A be a generic ACC adversary, allowed to ask one key encapsulation query,
qkd key decapsulation queries, and q1 + q2 + q3 random oracle queries, namely
qi random oracle queries of the form h(i, . . .). Assume A takes the running time
TA and achieves the advantage aA when distinguishing between the attack game
with the “real” and the attack game with a random encapsulated key.
Then an algorithm F exists to find the factors P and Q of N with at least the
probability aA/2− (q3 + 2qkd)/pq. The expected running time for F is at most
TA + Tδ, with Tδ being linear in the total number qΣ = (1 + qkd + q1 + q2 + q3)
of oracle queries. More specifically, Tδ is the time for doing 7 + 3qkd + q1 + q2

exponentiations mod N and O(qΣ) other operations.

Proof. The proof of Theorem 4 already describes what we call algorithm F ,
here: Run the key generation and then invoke the distinguishing adversary A,
providing all responses to A’s oracle queries. To prove Theorem 5, we concretely
analyse running time and probability of success of this algorithm.

A Variant of the Cramer-Shoup Cryptosystem 39

Running time:
During key generation, we compute seven values by exponentiation mod N :

u2β
1 , g

w, uw
1 , g

x1 , gx2

2 , g
x1 , gy2

2 . When responding to the key encapsulation query,
no exponentiations are necessary. Responding to a random oracle query h(1, . . .)
or h(2, . . .) may require to compute X2β . Queries h(3, . . .) can be answered
without computing any exponentiations.
Key decapsulation queries are slightly more complicated and may need up to

three exponentiations. Two are needed to to compute T ′. The values (K ′)2β have
already been computed when dealing with a random oracle query h(1, . . .) and
may have been stored in a table. But responding to a key decapsulation query
may require to make two additional calls h(2, . . .) and h(3, . . .) to the random
oracle, and calling h(2, . . .) may require another (third) exponentiation.
Thus the total number of exponentiations mod N is at most

3qkd + q1 + q2 + 7.

Similarly, we can count the total number of other operations, which is no more
than linear in qΣ , as well.

Note that the random oracle may have to respond to at most q1 queries h(1, . . .),
but to at most qkd + q2 queries h(2, . . .) and qkd + q3 queries h(3, . . .). The
reason is, that computing the answer to a decapsulation query may include two
additional random oracle queries h(2, . . .) and h(3, . . .).

Probability:
A cannot distinguish between the two attack games without asking for h(3, τ, u1, u2),

where τ = h(2, k, u1, u2) ∗ t. If A ever asks for h(2, k, u1, u2), the simulator
aborts and F will factorise N with a 50% probability of success. Else, A has no
(Shannon-) information about τ . In this case, and since at most q3+qkd queries
of the form h(3, . . .) are to be answered, the probability that any of these is of
the form h(3, τ, u1, u2) is at most (q3 + qkd)/pq.
When might the adversary be able to distinguish either of the attack games

from the experiment we define in the proof of Theorem 4, i.e., from the behavior
of algorithm F? The experiment behaves exactly like any of the attack games,
with the following two exceptions:

1. A asks for h(I,X,U1, U2) with I ∈ {1, 2} and X2β = e. In this case, the
experiment is aborted (and F has a 50% chance of factorising N).

2. A asks for the decapsulation of a ciphertext (U1, U2, T∗), without having
asked for h(1,K ′, U1, U2) before (K

′ is defined in Equation (7)). In this case,
F always rejects, while the attack games reject with the probability 1/pq.

Since A can ask for the decapsulation of qkd ciphertext, the entire probability
that any random ciphertext is not rejected in an attack game is ≤ qkd/pq.
Even ifA could always distinguish the “real” encapsulated key from a random

value when asking for h(3, τ, u1, u2) without asking for h(2, k, u1, u2) before,
or when a random ciphertext (U1, U2, T∗) in a key decapsulation query is not

40 S. Lucks

rejected, the probability for F to factorise N would not be less than

aA
2
−

q3 + qkd

pq
−

qkd

pq
.

ut

Remark 2 (Practical consequences of Theorem 5).
Theorem 5 counts modular exponentiations and mentions “other operations”.
These are simpler arithmetic operations (e.g. multiplication mod N), choosing
random values (∈

R
QRN , ∈R

ZZ∗N , and ∈R
ZZpq), and hash table look-up and

update operations. In practice, none of these operations should be slower than
an exponentiation mod N . Thus, the running time for algorithm F is TA+O(qΣ∗
TN), where TN is the time for computing an exponentiation mod N .
For any reasonable choice of N , the probability that F actually factorises N is
extremely close to aA/2.

7.3 Comparison to Shoup’s technique

The approach in this section has been inspired by Shoup [13], who also described
a “hedged” variant of the Cramer-Shoup Scheme, being both

– provably secure in the standard model under a “strong” assumption and
– provably secure in the random oracle model under a “weak” assumption.

In [13], the “strong” assumption is the DDH assumption for a group G of prime
order. The “weak” assumption is the CDH assumption for G. As was stressed in
[6] (see also [13, Remark 4]), the reduction in the random oracle model is quite
inefficient, since it is relative to a DDH oracle:

– Let the DDH assumption for G be false. I.e., a polynomial-time algorithm
A1 with a significant DDH advantage exists. By standard amplification tech-
niques (calling A1 polynomially often), we get A2, which achieves an over-
whelming DDH advantage. Note that the DDH-oracle A2 is “efficient” in the
sense of Complexity Theory, but may be quite inefficient in practice.
Assume an efficient generic ACC adversary A exists to break the hedged
Cramer-Shoup variant [13]. The reduction in [13] describes how to use the
adversary A as a tool to break the CDH assumption for G. The reduction
requires to call A2 each time when A asks a new random oracle query.

– Consider a hypothetical example (using viciously chosen numbers):
Let, for some choice of G, A1 run in 2

30 computer clocks. Thus, A1 could
qualify as “practically efficient”. If A2 executes A1 2

30 times, A2 could
be considered “hard, but feasible” on a massively parallel computer. Now
consider an efficient generic ACC adversary A making 230 random oracle
queries. The reduction provides an algorithm to solve the CDH problem for
G, but this algorithm would require more than 290 units of time.
Thus, an efficient generic ACC attack against the scheme does not necessarily
reduce to a practical solution for the CDH problem for G.

A Variant of the Cramer-Shoup Cryptosystem 41

As explained above, the reduction in the current paper is quite efficient, using
linearly many moderately simple operations (such as exponentiations mod N),
but no potentially complex operation (such as the DDH oracle in [13]).
Also note that we do not assume the hash function H to be TC-resistant, for

Theorem 4, in contrast to [13, Theorem 3].
On the other hand, the random oracle security in the current paper is based

on the factoring assumption, not on the CDH assumption. This may be seen as
a disadvantage. By generalising the technique from [13] for QRN , we might be
able to use the CDH assumption for QRN instead, which is at least as strong as
the factoring assumption for N , see Theorem 1.
A rather technical difference to our approach is that [13] introduces the notion

of a pair-wise independent hash function (PIH) and combines a PIH with a
random oracle. The PIH is required for the security result in the standard model
(i.e., for the counterpart of Theorem 3 in the current paper).

8 Final Remarks and Discussion

Remark 3 (The input for KD).
Note that the input (U1, U2, T

∗) ∈ QR2
N ×ZZ

∗
N is under control of the adversary.

If x is a number, it is easy to verify whether x ∈ ZZ∗N , but it may be difficult to
verify x ∈ QRN . We can deal with this problem by using KE’ and KD’ instead
of KE and KD:

– KE’: Compute KE and replace k by k2 and t by t2.
– KD’(SK,(U1, U2, T)) for (U1, U2, T) ∈ (ZZ

∗
N)

3: Compute KD(SK,(U2
1 , U

2
2 , T)).

Note that (Gen,KE’,KD’) is as sound as (Gen,KE,KD). But for (U1, U2, T) ∈
(ZZ∗N)

3, the input for KD is now in QR2
N ×ZZ

∗
N , as it should. A similar technique

can be used for the h-extension.

Remark 4 (The hash function H).
Theoretically we don’t need an additional assumption for the TC-resistance of
H. Based on the factoring assumption, provably secure TC-resistant (and even
stronger) hash functions are known. In practice, we may prefer to use a dedicated
hash function such as SHA-1 or RIPE-MD 160.

Recall that we deal with a cryptosystem which has computations in QRN ,
but nobody knows (or needs to know) the order of QRN . (Note that knowing
the order of QRN is equivalent to knowing the factors of N .)
This may be interesting for the construction of advanced cryptographic pro-

tocols, where some party knows the factorisation of N in addition to the secret
key, while another party only knows the secret key itself. E.g., consider a variant
of our scheme, where the factors of N (possibly more than just two, in contrast
to the current paper) are small enough that computing the discrete log mod-
ulo any of the factors is feasible. Everyone knowing the factorisation of N can
thus compute discrete logarithms mod N , and the factorisation of N may serve

42 S. Lucks

as a “master key”: Knowing it allows to compute the secret key from a given
public key defined over the group QRN . This approach is roughly related to key
insulation [8], where “ordinary” public keys may be stored and used in a risky
environment, while the master key is well protected.
From a practical point of view, it may not appear too useful to hide the

order of the group from the owner of the secret key (except in the context of the
advanced protocols mentioned above). In practice, the owner of the secret key
might want to use the knowledge of the factors P and Q of N to improve the
efficiency of key decapsulation by applying the Chinese Remaindering Theorem.
The main practical selling point for the current scheme is the improved se-

curity assurance in the random oracle model, compared to [13].
An interesting open problem is the following: Is this paper’s hedging tech-

nique (cf. Figure 1) applicable to other cryptosystems, e.g., to the variants of
the Cramer-Shoup Cryptosystem described in [7]?

Acknowledgement

Eike Kiltz [10] first observed Remark 1. He and the Asiacrypt referees provided
many hints to improve this presentation. Ronald Cramer [4] pointed out that
the framework from [7] can be used for an alternative proof of Theorem 2 and
Remark 1. Following a referee’s advice to give more attention to concrete security,
Theorem 5 has been added to this final version of the paper.

References

1. M. Abdalla, M. Bellare, P. Rogaway: “DHAES: an encryption scheme
based on the Diffie-Hellman problem”, preprint, March 17, 1999,
http://eprint.iacr.org/1999/007/.

2. M. Bellare, P. Rogaway: “Random oracles are practical: a paradigm for designing
efficient protocols”, ACM Computer and Communication Security ’93, ACM Press.

3. M. Bellare, A. Desai, D. Pointcheval, P. Rogaway: “Relations among notions of
security for public-key encryption scheme”, Crypto ’98, Springer LNCS 1462.

4. R. Cramer, personal communication.
5. R. Cramer V. Shoup: “A practical cryptosystem, provably secure against chosen

ciphertext attacks”, Crypto ’98, Springer LNCS 1462.
6. R. Cramer V. Shoup: “Design and analysis of practical public-key encryption

schemes secure against adaptive chosen ciphertext attack”, revised and extended
version of [5], December 17, 2001, http://eprint.iacr.org/2001/108/.

7. R. Cramer V. Shoup: “Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption”, preprint, 2nd version, December 12, 2001,
http://eprint.iacr.org/2001/085/. (Extended abstract at Eurocrypt 2002.)

8. Y. Dodis, J. Katz, S. Xu, M. Yung: “Key-Insulated Public Key Cryptosystems”,
Eurocrypt 2002.

9. D. Dolev, C. Dwork, M. Naor: “Non-malleable cryptography”, SIAM Journal of
Computing, 2000. (Extended abstract at STOC ’91, ACM Press.)

10. E. Kiltz, personal communication.

A Variant of the Cramer-Shoup Cryptosystem 43

11. M. Naor, M, Yung: “Public-key cryptosystems provably secure against chosen ci-
phertext attacks”, STOC ’90, ACM Press.

12. C. Rackoff, D. Simon: “Non-interactive zero knowledge proof of knowledge and
chosen ciphertext attacks”, Crypto ’91, Springer LNCS.

13. V. Shoup: “Using hash functions as a hedge against chosen ciphertext attack”,
Eurocrypt ’00, Springer LNCS.

Appendix

A Properties of the Set QRN – Proofs

In this section, we prove the Lemmas stated in Section 2. Consider the sets

QRP = {x ∈ ZZ
∗
P | ∃a ∈ ZZ

∗
P : a

2 ≡ x (mod P)},

QRQ = {x ∈ ZZ
∗
Q | ∃a ∈ ZZ

∗
Q : a

2 ≡ x (modQ)}, and

QRN = {x ∈ ZZ
∗
N | ∃a ∈ ZZ

∗
N : a

2 ≡ x (modN)}

of Quadratic Residues modulo P , Q and N . Recall the following facts (which we
don’t prove in the current paper):

Fact 1 The sets QRN , QRP , and QRQ are multiplicative groups.

Fact 2 |QRN | = pq, |QRP | = p, and |QRQ| = q.

Fact 3 Groups of prime order are cyclic.

Lemma 1. QRN has a nontrivial subgroup of order p and a nontrivial subgroup
of order q. Both subgroups are cyclic.

Proof. Note that x ∈ ZZN is in QRN , if and only if x is both a Quadratic Residue
mod P and a Quadratic Residue mod Q.
If a ≡ 1 (modP) and b ≡ 1 (modP), then ab ≡ 1 (modP), and if both a

and b are Quadratic Residues mod Q, then ab is a Quadratic Residue mod Q as
well. Thus, the set

{x ∈ ZZ∗N | ∃a ∈ QRQ : x ≡ a mod Q and x ≡ 1 mod P}

is a subgroup of QRN of the order |QRQ| = q. Similarly, a subgroup of QRN of
the order p exists. Groups of prime order are cyclic. ut

Lemma 2. QRN is cyclic. It consists of one element of the order 1, (p − 1)
elements of the order p, (q − 1) elements of the order q, and (p − 1)(q − 1)
elements of the order pq.

Proof. Consider a, b ∈ QRN with ord(a) = p, ord(b) = q. Due to Lemma 1, such
elements a and b exist; ord(ab) = lcm(p, q) = pq, thus g = ab generates QRN .
Due to ord(g) = pq we have ord(g0) = ord(gab) = ord(1) = 1, ord(gi) = pq ⇔

(i > 1 and gcd(i, pq) = 1), ord(gkp) = q for k ∈ {1, . . . , q − 1}, and ord(glp) = q
for l ∈ {1, . . . , p− 1}. ut

44 S. Lucks

Lemma 3. For every x ∈ QRN : ord(x) ∈ {p, q} ⇒ gcd(x− 1, N) ∈ {P,Q}.

Proof. From Lemma 2 and the proof of Lemma 1: ord(x) = q ⇔ X ≡ 1 (mod
P)⇒ gcd(x− 1, N) = P . Similarly: ord(x) = p⇒ gcd(x− 1, N) = Q. ut

Lemma 3 implies that an adversary who is able to find any x ∈ QRN with
ord(x) 6∈ {1, pq}, can factorise N . Further, if ord(x) = pq, then gcd(x−1, N) = 1.
An implication of Lemma 2 is that it is easy to find a random generator for
QRN . Choose x ∈

R
ZZ∗N and compute g = x2 mod N . If p and q are large, g is a

generator for QRN with overwhelming probability. In any case, g is a generator
if and only if ord(g) 6∈ {1, p, q}; ord(g) = 1 ⇔ g = 1, and Lemma 3 provides a
way to check for ord(g) 6∈ {p, q}.
Lemma 4. Let g be a generator for QRN . For every x ∈ ZZpq: ord(g

x) ∈
{p, q} ⇔ gcd(x, pq) ∈ {p, q}.

Proof. If x ≡ p (mod pq), then gqx = 1 and thus ord(gx) = q. If ord(gx) = q,
then (gx)p = 1 ⇒ xp ≡ 0 mod pq ⇒ x ≡ p (mod pq). Thus, x ≡ p (mod pq) ⇔
ord(gx) = q. Similarly, we get x ≡ q (mod pq)⇔ ord(gx) = p. ut

B ACC-Security and Lunchtime-Security

Key decapsulation queries correspond to chosen ciphertext decryption queries in
the public-key (PK) world. The key encapsulation query corresponds to the PK
encryption query. Here, a plaintext is chosen by the adversary, the oracle either
really encrypts that plaintext or it encrypts a random plaintext, and the adver-
sary has to distinguish between real and random. Lunchtime (i.e. non-adaptive)
security deals with all decryption queries before the encryption query. ACC
attacks against PK cryptosystems deal with two phases of chosen ciphertext
queries, the first before the encryption query, the second after the encryption
query. (As mentioned in Footnote 1, some authors denote lunchtime security by
“IND-CCA1” and ACC security by “IND-CCA2”. Here “IND” means “indistin-
guishable”. This notation has been introduced in [3].) In the second phase, one
may not ask for the decryption of the result of the encryption query.
A definition for a lunchtime-secure KEM would require a minor modification

of our definition for an ACC-secure KEM by asking the decapsulation queries
before the encapsulation query. And a two-phase attack against a KEM with
some decapsulation queries before and some after the encapsulation query –
similar to the ACC attack against PK cryptosystems – can easily be simulated
by our (one-phase) ACC attack.

C The Proof for Factoring assumption ⇒ CDH

assumption

Proof (Theorem 1). We describe an algorithm using a CDH oracle for QRN as a
tool to factorise N . For random inputs, the oracle succeeds with probability π.

A Variant of the Cramer-Shoup Cryptosystem 45

– Choose β ∈
R
ZZpq, α ∈R

ZZ∗N and compute g2 = α2 .

– Choose u1 ∈R
QRN and compute g = u2β

1 .

– Use the CDH oracle to compute u2 with u2β
2 = g2.

– If uβ
2 6≡ ±α (modN), print gcd(uβ

2 − α,N).

Since β ∈ ZZpq is a uniformly distributed random value (or statistically indistin-
guishable from uniform) so are the values g, g2, u2 ∈ QRN . With the probability

π, we get a random square root uβ
2 of g2. Two of the four square roots of g2,

namely ±α are not useful, but if α 6≡ ±uβ
2 (modN), then gcd(u

β
2 − α,N) ∈

{P,Q} factorises N . ut

