
Secure Channels based on Authenticated

Encryption Schemes: A Simple Characterization

Chanathip Namprempre

Department of Computer Science, Thammasat University
41-42 km. Paholyothin Road, Khong Luang, Rangsit

Pathum Thani, Thailand 12121
E-Mail: meaw@alum.mit.edu. URL: www-cse.ucsd.edu/users/cnamprem.

Abstract. We consider communication sessions in which a pair of par-
ties begin by running an authenticated key-exchange protocol to obtain
a shared session key, and then secure successive data transmissions be-
tween them via an authenticated encryption scheme based on the session
key. We show that such a communication session meets the notion of a
secure channel protocol proposed by Canetti and Krawczyk [9] if and
only if the underlying authenticated encryption scheme meets two new,
simple definitions of security that we introduce, and the key-exchange
protocol is secure. In other words, we reduce the secure channel require-
ments of Canetti and Krawczyk to easier to use, stand-alone security
requirements on the underlying authenticated encryption scheme. In ad-
dition, we relate the two new notions to existing security notions for
authenticated encryption schemes.

1 Introduction

We consider communication sessions in which a pair of parties begin by running
an authenticated key-exchange (KE) protocol to obtain a shared session key,
and then secure successive data transmissions between them via an authenti-
cated encryption scheme, a shared-key-based encryption scheme whose goal is to
provide both privacy and authenticity, based on the session key. Many popular
Internet protocols follow this structure [1, 15, 11, 23]. One reason is that it mini-
mizes computationally intensive public-key cryptography by using more efficient
symmetric-key cryptography for the bulk of the communication.
At Eurocrypt 2001, Canetti and Krawczyk presented security definitions for

protocols of this form [9]. They refer to such protocols as network channel proto-
cols (or channel protocols for short). In their work, they derive a realistic adver-
sarial model from [2] and formulate security definitions using a mixture of both
simulation-based and indistinguishability-based approaches. The former allows
them to realistically and naturally capture the security properties of channel
protocols and the settings in which the protocols are deployed. The latter allows
them to prove security of the protocols with relative ease. The result is the notion
of secure channels, a notion that captures the desired security properties of the

516 C. Namprempre

communication channels themselves, rather than those of the components used
in constructing them, namely the underlying authenticated encryption schemes.

In contrast, most existing work has traditionally focused on security prop-
erties of encryption schemes. Examples include indistinguishability notions for
asymmetric encryption schemes pioneered in [17] and adapted to symmetric-key
settings in [3], non-malleability notions defined in [13, 3] and refined in [8], and
integrity notions defined in [19, 5, 20]. Due to the simplicity and ease of use of
these definitions, this approach has proved fruitful and has become the standard
way to prove security of encryption schemes.

Our work uses this traditional approach to investigate security properties of
the authenticated encryption schemes underlying channel protocols. In particu-
lar, our goal is to address the following question. Suppose one takes a “secure”
KE protocol and combines it with an authenticated encryption scheme as de-
scribed above to obtain a channel protocol. What are the necessary and sufficient
conditions on the underlying authenticated encryption scheme for the resulting
channel protocol to be a secure channel per [9]? The answer to this question will
allow us to analyze security of channel protocols in a modular fashion: first con-
sider the underlying KE protocol and the underlying authenticated encryption
scheme separately, then determine whether the former is “secure” and whether
the latter meets the necessary and sufficient conditions. If both are affirmative,
then the channel protocol in question is a secure channel. Not only does this ap-
proach simplify protocol analysis, but the necessary and sufficient conditions also
help distill exactly the security properties of authenticated encryption schemes
that are needed to obtain secure channels. This understanding can help guide
cryptographers in designing future schemes for building secure channels.

Krawczyk has already made some progress in this direction in [20]: he pro-
vides a necessary condition for a class of authenticated encryption schemes,
namely those constructed via the “Authenticate-then-Encrypt” method,1 to
yield a secure channel, assuming that the underlying KE protocol is “secure.”
Our goal is to provide both necessary and sufficient conditions that are easy-to-
use and can be applied to any authenticated encryption schemes, as opposed
to schemes of a certain form. To this end, we use the traditional approach of
defining security since it yields definitions that are simple and relatively easy to
use.

Security model of Canetti and Krawczyk. In [9], Canetti and Krawczyk
use the adversarial model of [2]: an adversary is in control of all message delivery
and the execution of the protocol. In particular, once the setup phase of the
protocol is completed, all parties in the system simply wait for activations from
the adversary. Possible activations include sending messages, receiving messages,
and establishing a session. Messages are delivered solely by the adversary under

1 Under this paradigm, a message authentication scheme and an encryption scheme
are composed to obtain an authenticated encryption scheme as follows. To encrypt a
message M , first compute its MAC via a message authentication scheme and encrypt
the concatenation of M and the MAC to obtain the ciphertext to be transmitted.
Decryption works in a natural way.

Secure Channels based on Authenticated Encryption Schemes 517

either of the following models: the Authenticated-links Model (AM) and the
Unauthenticated-links Model (UM). Both models allow the adversary to drop
messages and to deliver them out of order. In the former, an adversary cannot
inject messages and must deliver messages without modifications. In the latter,
it can inject fabricated messages and modify messages before delivering them.
Section 2.1 describes the security model of [9] in more detail.

Canetti and Krawczyk also present a security definition for KE protocols
based on the approach of [6] in this adversarial model. Intuitively, they consider
a KE protocol to be secure if, when the two parties involved in the exchange
complete the protocol, (1) they arrive at the same session key, and (2) it is hard
for an adversary to distinguish the session key from a random value chosen from
the distribution of keys generated by the protocol.

Secure channels. Canetti and Krawczyk define a secure channel as a channel
protocol that is both a secure (network) authentication protocol and a secure
(network) encryption protocol. The definition of the former uses a simulation-
based approach: a protocol secure in this sense must emulate ideal message
transmissions where the notion of emulation amounts to computational indistin-
guishability of protocol outputs. To this end, [9] defines a session-based message
transmission (SMT) protocol, a protocol that does nothing more than its name
suggests. For example, to establish a session, a party simply records in its output
that a session has been established. To send a message, a party simply puts the
message in the message buffer and records in its output that the message has
been sent.

The definition of secure encryption protocols applies an indistinguishability-
based approach similar to the “find-then-guess” game in [3] (which in turn is
an adaptation of semantic security of [17] into the symmetric setting) in this
adversarial model. Specifically, the protocol is run in the UM against an adver-
sary which, at some point during the run, chooses a session it wishes to break.
The rest of the run closely follows the standard find-then-guess game with a few
important exceptions. See Section 2.2 for details.

Capturing the essence of secure channels. Following [9], we define a
transform to specify how the channel protocols considered in this paper are gen-
erated: given a KE protocol π and an authenticated encryption scheme AE , we
associate with them a channel protocol NC = NetAE(π,AE) obtained by apply-
ing the transform to π and AE . This transform is defined in Section 2.3. We
focus on protocols constructed via this transform. Our goal is to find simple
necessary and sufficient conditions on the underlying authenticated encryption
scheme such that the protocol is a secure channel, assuming that the KE pro-
tocol is secure. We define two simple notions: SINT-PTXT and IND-CCVA.
The former (resp. the latter) is a necessary and sufficient condition on the un-
derlying authenticated encryption scheme such that the channel protocol is a
secure authentication (resp. encryption) protocol. In effect, this reduces the se-
cure channel requirements of Canetti and Krawczyk to easier to use, stand-alone
security requirements on the underlying authenticated encryption scheme.

518 C. Namprempre

We define the two notions using the traditional approach: we give an adver-
sary access to certain oracles, run it in an experiment, and then measure the
probability that it succeeds. Section 3 describes these notions in detail. Precise
statements of our main results are presented in Section 4 along with the proof
ideas.

Technical issue. The notion of secure authentication protocols captures rea-
sonable authenticity guarantees such as resistance against replay attacks and
forgeries. Therefore, to determine if a channel protocol provides authenticity
when these attacks are of concern, one needs simply determine whether the pro-
tocol is a secure authentication protocol. However, due to a technical issue arisen
from the notion of secure encryption protocol per [9], the same cannot be said
regarding privacy. In particular, there exists a channel protocol that clearly does
not provide semantic security [17] (i.e., partial information about transmitted
messages may be leaked) and yet is provably a secure encryption protocol. Ar-
guably, however, this technical issue does not arise in many practical protocols,
including the popular SSH, SSL, and TLS. Consequently, the notion of secure
encryption protocol can still be applied to these protocols to obtain meaningful
results regarding their privacy guarantees. Section 5 discusses this issue in more
detail.

Future work. Canetti and Krawczyk have recently proposed an alternative no-
tion for secure channels that implies their secure channel notion of [9]. This new
notion is called universally composable secure channels [10]. It provides strong
composability guarantees, which means that its security guarantees hold even if
the channel protocol is used in combination with other protocols. Thus, a natural
research direction is to determine whether we can use the same approach taken
here to derive simple necessary and sufficient conditions for an authenticated
encryption scheme to yield a universally composable secure channel.

2 Definitions

2.1 Preliminaries

Since the authenticated encryption schemes considered in [9] have stateful de-
cryption algorithms, we modify the standard syntax of symmetric authenticated
encryption schemes, which assumes that decryption algorithms are stateless [3],
to allow for stateful decryption algorithms. We also explicitly specify the syntax
of a message-driven protocol based on [2, 9] and restate the security model of [9]
in more detail here.

Syntax of (symmetric) authenticated encryption schemes. A (sym-
metric) authenticated encryption scheme AE = (K, E ,D) consists of three algo-
rithms. The randomized key generation algorithm K takes as input a security

parameter k ∈ N and returns a key K; we write K
R

← K(k). The encryption
algorithm E could be randomized or stateful. It takes the key K and a plaintext

M to return a ciphertext C; we write C
R

← EK(M). The decryption algorithm

Secure Channels based on Authenticated Encryption Schemes 519

D could be deterministic, and it could be either stateless or stateful. It takes
the key K and a string C to return either the corresponding plaintext M or the
symbol ⊥; we write x← DK(C) where x ∈ {0, 1}

∗ ∪ {⊥}. Above, a randomized
algorithm flips coins anew on each invocation, and a stateful algorithm uses and
then updates a state that is maintained across invocations.
Since the decryption algorithm is allowed to be stateful here, the usual cor-

rectness condition, which requires that DK(EK(M)) = M for all M in the
message space, is replaced with a less stringent condition requiring only that
decryption succeed when the encryption and decryption processes are in syn-
chrony. More precisely, the following must be true for any key K and plain-
texts M1,M2, Suppose that both EK and DK are in their initial states. For
i = 1, 2, . . ., let Ci = EK(Mi) and letM

′
i = DK(Ci). It must be thatMi =M ′

i for
all i. Notice that this imposes no correctness requirement when ciphertexts are
decrypted out of order. It is up to an individual scheme to decide how to handle
ciphertexts that are decrypted out of order. For example, it can reject all such
ciphertexts or accept only the ones that decrypt to certain seen messages. We
stress that since this requirement is a part of the syntax of encryption schemes,
it is liberal by design (messages that arrive out of order can have arbitrary de-
cryptions under this requirement!).2 The goal here is to ensure that as many
encryption schemes as possible can be analyzed under the security notions of
interest.

Syntax of message-driven protocols. A message-driven protocol NC =
(IG,B, I, x, l, n, r, activation list) consists of three algorithms, four positive inte-
ger parameters, and a list of activations that can be invoked on a party along
with instructions on how the party should handle them. Let k ∈ N be the se-
curity parameter. The parameter n specifies the upper bound of the number of
parties in the system. The randomized input generation algorithm IG takes as
inputs k and an x-bit string and returns n strings (x1, . . . , xn). The randomized
bootstrapping algorithm3 B takes as inputs k and an l-bit string and returns
n + 1 strings (I0, . . . , In). For each party Pi, the possibly randomized initial-
ization algorithm I takes as inputs I0, Ii, xi, and an r-bit string. Executing the
initialization algorithm may cause the party to update its internal state, to gen-
erate outputs to be appended to its local output, and/or to produce messages to
be sent to other parties.

Message-driven protocol execution [9]. Let k ∈ N be the security param-
eter. A protocol NC = (IG,B, I, x, l, n, r, activation list) is executed against an
adversary as follows. First, random coins for IG,B, and I are generated, and IG
and B are executed. Then, each party Pi executes the initialization algorithm
I giving it appropriate inputs as described above. When the initialization algo-

2 Recall that syntax and security notion are two separate concepts. Apparently “inse-
cure” schemes such as one that allows arbitrary decryptions for messages that arrive
out-of-order are in fact legitimate encryption schemes, i.e. they follow the syntax
defined here. However, they are not secure under integrity notions, for instance.

3 Also known as an initialization function in [2, 9]. We drop their terminology here to
avoid confusion with the initialization algorithm.

520 C. Namprempre

rithm completes, the party waits for incoming activations. Finally, the adversary
is run using k, I0, and as many random coins as it needs. The adversary takes
over and activates any parties it wishes to at this point.

Upon receiving an activation, a party executes the corresponding algorithm
as specified in activation list. Again, the result of the execution may be internal
state updates, local output generation, and/or outgoing messages. In the last
case, the party appends the message in the message buffer M along with its
source, destination, and, in the case of a session-based protocol, the associated
session. As an example, upon receiving a “send” activation from the adversary,
a party finds the algorithm for handling a send activation in its activation list
and executes the algorithm. This typically involves encrypting the message, ap-
pending the ciphertext (along with its source, destination, and session ID) to
M, and recording the event (e.g., a record to the effect “sent M to P within

session s”) in the party’s local output.

Protocol output. The output of a running protocol is the concatenation of
the cumulative local outputs of all the parties, together with the output of the
adversary. Furthermore, since all actions of the adversary are recorded in the
local outputs, they are part of the protocol output.

Session-based message-driven protocols [9]. A session-based message-
driven protocol defines at least two activations: establish-session and expire-
session. They specify how each party can establish a session between itself and
another. We denote by (P, P ′, s) a session defined by the initiating party P , the
responding party P ′, and the session ID s. The two parties P and P ′ are said to
play the roles of an initiator and a responder, respectively. Two identical sessions
(i.e., identical session IDs, participating parties, and their respective roles) from
the point of view of the initiator and the responder are called matching sessions.
In other words, if in an execution of a protocol an initiating party P has a session
(P, P ′, s) and a responding party P ′ has a session (P, P ′, s), then we say that
the two sessions are matching. The defining feature of session-based protocols is
that individual sessions are maintained separately from one another even when
they are established between the same pair of parties.

Key-exchange protocols. A key-exchange (KE) protocol is a session-based
message-driven protocol that specifies how two parties can establish a shared
session key to be used during a session. Upon an establish-session activation,
a party triggers a sub-protocol to establish a session with another party. This
sub-protocol will likely result in further activations such as message sends and
receipts. Once the sub-protocol completes, the two parties write on their outputs
the resulting session key and mark the entry as “secret.” Note that, although
potentially confusing, the term “key-exchange protocol” is commonly used in
the literature to refer to this sub-protocol rather than the entire protocol. Upon
an expire-session activation of a particular session, the party erases the corre-
sponding session key from its output and any internal state it may have (e.g.,
its memory) and terminate the session. Notice that this means that a session
can be unilaterally expired. The goal of this activation is to allow KE protocols

Secure Channels based on Authenticated Encryption Schemes 521

to provide perfect forward secrecy of sessions, a property that past session keys
remain secret even after long-term keys are compromised [18, 12].

Network channel protocols. A network channel protocol (or a channel
protocol for short) is a session-based message-driven protocol with two additional
activations: send and incoming. They specify what a party running the protocol
should do to send and to receive a message.

Power of an adversary. When interacting with parties executing a session-
based message-driven protocol, an adversary is allowed to access the contents of
each party’s local output except those marked as “secret.” It can also perform
the following actions: party activation, party corruption, session-state reveal, and
session-output reveal. In addition to these actions, an adversary against a KE
protocol can also perform a session-key reveal action against a party to obtain a
session key. A session is considered exposed if it belongs to a corrupted party,
has been subjected to a session-state reveal, a session-output reveal, a session-key
reveal, or has a matching session that has been exposed.

Authenticated and unauthenticated links models. In the Authenticated-
links Model (AM), the adversary can perform all of the actions mentioned above.
Furthermore, all message delivery is performed by A: to deliver a message in the
message bufferM, the adversary A removes it fromM and activates the receiv-
ing party with the message as an incoming message. We emphasize that A can
deliver messages in any arbitrary order and can drop messages fromM entirely.
However, it cannot deliver messages that are not inM, and when it does deliver
a message, it must do so without any modifications to the message. On the other
hand, in the Unauthenticated-links Model (UM), not only can a UM adversary
perform all of the actions permitted to an AM adversary, but it can also deliver
messages that are not inM or modify messages inM before delivering them.

Notation. We use |r| to denote the length in bits of a string r. Let k ∈ N be
the security parameter, and let U be an adversary. Let NC = (IG,B, I, x, l, n, r,
activation list) be a session-based message-driven protocol. We follow the nota-
tion of [2, 9] for the protocol output. We describe it here in detail for the UM.
The AM is done similarly except that the bootstrapping algorithm is ignored
and its outputs are omitted. We denote by UNADVπ,U (k, ~x, ~r) the output of the
UM adversary U running against parties executing the protocol π with security
parameter k, inputs ~x = (x1, . . . , xn), and coins ~r = r′, r′′, r0, . . . , rn where |r

′| =
x, |r′′| = l, and |r0| = . . . = |rn| = r. We denote by UNAUTHπ,U (k, ~x, ~r)i the cu-
mulative output of the party Pi running the protocol π with security parameter
k, inputs ~x, and coins ~r against the UM adversary U . Then, we let the protocol
output UNAUTHπ,U (k, ~x, ~r) = UNADVπ,U (k, ~x, ~r),UNAUTHπ,U (k, ~x, ~r)1, . . . ,
UNAUTHπ,U (k, ~x, ~r)n and let UNAUTHπ,U (k) be the random variable describ-
ing UNAUTHπ,U (k, ~x, ~r) when ~r is randomly chosen and ~x is generated via
IG(k, r′). We denote by UNAUTHπ,U the ensemble {UNAUTHπ,U (k)}k∈N .

522 C. Namprempre

2.2 Secure Channels per Canetti and Krawczyk [9]

In [9], Canetti and Krawczyk define a secure channel as a channel protocol that
is both a (secure) authentication protocol and a (secure) encryption protocol.
For authentication protocols, their approach is to first define a protocol con-
sidered ideal as a message authentication protocol called the SMT protocol. A
channel protocol is considered a secure authentication protocol if it emulates
the SMT protocol in the UM. Below, we present the concept of protocol emula-
tion, the SMT protocol, and the definition of secure authentication protocols in
Definition 1, Construction 2, and Definition 3, respectively.

Definition 1 (Protocol Emulation [2, 9]). Let π, π′ be message-driven pro-
tocols. We say that π′ emulates π in the UM if, for any UM adversary U , there
exists an AM adversary A such that AUTHπ,A and UNAUTHπ′,U are computa-
tionally indistinguishable.

Construction 2 (SMT Protocol [9]). The protocol SMT is a session-based
message-driven protocol with the following activations: establish-session, expire-
session, send, and incoming. Upon an establish-session activation, a party records
the event accordingly in its output. Upon an expire-session activation, a party
checks that the session exists, marks the session as expired, and records the event
accordingly in its output. When a party receives a send activation involving a
message, a partner, and a session ID, it checks that the session is established and
is not expired. If so, it sends the given message to its partner via the specified
session. Then, it records the event accordingly in its output. Finally, upon an
incoming activation, a party checks that the session is established and is not
expired. If so, it records the event accordingly in its output.

Definition 3 (Network Authentication Protocol Security [9]). A proto-
col is considered to be a secure authentication protocol if it emulates the SMT
protocol in the UM.

In defining secure encryption protocols, [9] adapts the indistinguishability-based
approach to a multi-party computation setting. We present their security defi-
nition here. In what follows, the activation send∗(P,Q, s,Mb) has the same ef-
fects as send(P,Q, s,Mb) except that the party Q merely records the fact that
a message is sent but not the actual contents of the message, i.e., P records
the entry “sent a message to Q within session s”. Similarly, the activa-
tion incoming∗(Q,P, s, C,Mb) has the same effects as incoming(Q,P, s, C) except
that, if the decrypted message of C is equal to Mb, then Q merely records the
fact that a message is received but not the actual contents of the message Mb,
i.e., Q records the entry “received a message from P within session s”.
Let b be a bit. In the experiment below, an adversary U runs in the UM, and

its goal is to break one session of its choice by performing an action called test-
session against the session and then doing what it can to guess the bit b. Once
U picks a session, say (P,Q, s), it outputs a pair of messages, say (M0,M1).
The sender P is then activated to send Mb. However, if P records in its lo-
cal output at this point that it sends Mb, then U can easily win the game by

Secure Channels based on Authenticated Encryption Schemes 523

simply looking at P ’s output. Therefore, P is activated with send∗(P,Q, s,Mb),
rather than a regular send activation. The rest of the run continues in the same
way as before except that now the receiving party of the tested session uses
incoming∗(Q,P, s, C,Mb) to handle incoming messages. The reason for this is
the following: if Q records all decryptions of incoming ciphertexts, U can easily
determine the bit b by simply taking the challenge ciphertext corresponding to
Mb, handing it to Q as an incoming ciphertext, then seeing what Q writes on
its output. The activation incoming∗ prevents this trivial attack.

Unfortunately, the game in its present form allows U to easily win via an-
other trivial attack. Suppose the tested session is (P,Q, s). First, U picks any
message M , activates P with a send activation to send M to Q via s, and out-
puts the challenge message pair (M,M ′) where M 6= M ′. As a result of the
send activation, P encrypts M to obtain a ciphertext C and appends C to the
message buffer. Now, U activates the receiver Q with the ciphertext C as an
incoming message from P via session s. If Q does not record the decrypted mes-
sage, then C corresponds to M , and thus b = 0. Otherwise, C corresponds to
M ′, and thus b = 1. Therefore, to prevent this trivial attack, [9] requires that
an adversary never ask for an encryption of a particular message more than
once. This requirement can be easily implemented using counters. For example,
the encryption algorithm can prepend an internal counter to the input message
before encrypting the resulting string to obtain the ciphertext. In fact, the use
of this mechanism is common in practical Internet protocols including SSH [23],
SSL [15], and TLS [11]. Definition 4 below describes the security of network
encryption protocols more precisely.

Definition 4 (Network Encryption Protocol Security [9]). Let k ∈ N.
Let NC = (IG,B, I, x, l, n, r, activation list) be a channel protocol. Let U be a
UM attacker, and let rU : N→ N be the function specifying the upper bound of
the running time of U in terms of k. Consider the following experiment:

Experiment Expind-ne-b
NC,U (k)

r′
R

← {0, 1}x ; r′′
R

← {0, 1}l ; r0
R

← {0, 1}rU (k)

(x1, . . . , xn)← IG(k, r
′) ; (I0, . . . In)← B(k, r

′′)

For i = 1, . . . , n do ri
R

← {0, 1}r ; start Pi on (I0, Ii, xi, ri)
Run U on input (k, I0, r0), carrying out U ’s actions as specified in NC
. When U submits test-session(Pi, Pj , s0) and outputs (M0,M1)
— Activate Pi with send∗(Pi, Pj , s0,Mb)

. Continue carrying out U ’s actions as specified in NC except
— Whenever U activates Pj with incoming(Pj , Pi, s0, C),
Activate Pj with incoming∗(Pj , Pi, s0, C,Mb) instead

Until U halts and outputs a bit d
Output d

Above, it is required that U submit only one test-session query and that it
not expose the tested session thereafter. Furthermore, for the tested session, we
require that U never invoke send activations involving M0 or M1 and also never

524 C. Namprempre

invoke send activations involving a particular message more than once. We define
the advantage of the adversary via

Advind-ne
NC,U (k) = Pr[Exp

ind-ne-1
NC,U (k) = 1]− Pr[Expind-ne-0

NC,U (k) = 1] .

The channel protocol NC is said to be a secure encryption protocol in the UM
if the function Advind-ne

NC,U (·) is negligible for any UM adversary U whose time-
complexity is polynomial in k.

2.3 From KE and Authenticated Encryption Schemes to Channel
Protocols

In [9], Canetti and Krawczyk use a template by which one can describe how a
KE protocol and an authenticated encryption scheme can be used as building
blocks for a channel protocol. We define a transform based on this template.

Construction 5 (Transform [9]). Let π = (IG,B, I, x, l, n, r, activation list)
be a KE protocol, and let AE = (K, E ,D) be an authenticated encryption
scheme. We associate with π and AE a channel protocol NAE = NetAE(π,AE) =
(IG,B, I, x, l, n, r, alist) where alist contains the activations in activation list to-
gether with the following activations.

1. establish-session(Pi, Pj , s, role): This triggers a KE-session under π within Pi
with partner Pj , session ID s, and role ∈ {initiator, responder}. If the KE-
session completes, Pi records in its local output the entry “established
session s with Pj” and the generated session key marked as “secret.” Oth-
erwise, no action is taken.

2. expire-session(Pi, Pj , s): If the session (Pi, Pj , s) exists at Pi, the party Pi
marks the session as expired and erases the session key. Then, Pi records
in its local output “expired session s with Pj”. Otherwise, no action is
taken.

3. send(Pi, Pj , s,M): The party Pi checks that the session (Pi, Pj , s) has been

completed and not expired. If so, it computes C
R

← EK(M) using the cor-
responding session key K, puts (Pi, Pj , s, C) in the message buffer M, and
records “sent M to Pj within session s” in the local output. Other-
wise, no action is taken.

4. incoming(Pj , Pi, s, C): The party Pj checks that the session (Pi, Pj , s) has
been completed and not expired. If so, it computes M ← DK(C) under the
corresponding session key K. IfM 6= ⊥, then Pj records “received M from

Pi within session s”. Otherwise, no action is taken.

3 Simple Characterizations of Authenticated Encryption

Schemes for Secure Channels

We propose two new security notions for authenticated encryption schemes:
SINT-PTXT (for strong integrity of plaintexts) and IND-CCVA (for indistin-
guishability against chosen-ciphertext attacks with verification). The goal is to

Secure Channels based on Authenticated Encryption Schemes 525

capture the necessary and sufficient properties of the authenticated encryption
scheme such that, once the transform per Construction 5 is applied to the scheme
and a KE protocol, the resulting channel protocol is a secure channel, assuming
that the KE protocol “securely implements” the key generation algorithm of the
authenticated encryption scheme. We postpone a precise definition of the term

in quotes to Section 4. In what follows, we use x
R

← f(y) to denote the pro-
cess of running a possibly randomized algorithm f on an input y and assigning
the result to x. If A is a program, A ⇐ x means “return x to A.” The time-
complexity referred to in our definitions is the worst case total execution time of
the entire experiment, plus the size of the code of the adversary, in some fixed
RAM model of computation. Also, oracles corresponding to stateful algorithms
maintain their states across invocations.
First, we capture the notion of a secure authentication protocol with SINT-

PTXT. Recall that a protocol is considered a secure authentication protocol if
it emulates the SMT protocol in the UM where SMT is an ideal session-based
message transmission protocol. Under the SMT protocol in the AM, when a
party sends a message M to another party, the message M is simply put on the
buffer. Since the adversary is operating in the AM, it can drop messages but
cannot modify or inject messages. Therefore, a secure authentication protocol
must ensure that each sent message is received at most once (i.e., replay attacks
are unsuccessful), and that its contents are left intact.
We define the SINT-PTXT notion in Definition 6. An adversary is given

access to an encryption oracle and a decryption oracle. This captures its ability
to obtain encryption and decryption of messages and ciphertexts of its choice.
We use a multiset, denoted T below, to keep track of messages that have been
sent but not yet received. Whenever a message is received, it is removed from
the multiset. If an adversary is able to submit a query to the decryption oracle
that results in a message that is not in the multiset T , i.e., the message is not
one of those waiting to be received, then it wins.

Definition 6 (SINT-PTXT). Let AE = (K, E ,D) be an authenticated en-
cryption scheme. Let k ∈ N. Let A be an adversary with access to two oracles.
Consider the following experiment.

Experiment Expsint-ptxt
AE,A (k)

K
R

← K(k) ; T ← ∅ // T is a multiset

Run AEK(·),DK(·)(k)
Reply to EK(M) as follows:

C
R

← EK(M) ; T ← T ∪ {M} ; A⇐ C

Reply to DK(C) as follows:
M ← DK(C)
If M = ⊥ Then A⇐M

Else If M ∈ T Then T ← T − {M} ; A⇐M

Else return 1
Until A halts
Return 0

526 C. Namprempre

We define the advantage of the adversary via

Advsint-ptxt
AE,A (k) = Pr[Expsint-ptxt

AE,A (k) = 1] .

The scheme AE is said to be SINT-PTXT secure if the function Advsint-ptxt
AE,A (·)

is negligible for any adversary A whose time-complexity is polynomial in k.

Now, we capture the notion of a secure encryption protocol. To capture an adver-
sary’s ability to obtain encryption and decryption of messages and ciphertexts
of its choice, we give it access to an encryption oracle EK(·) and a decryption
oracle DK(·). The definition follows that of [9] closely and straightforwardly. Let
b ∈ {0, 1}. Recall that, in the definition of secure encryption protocol per [9],
once the adversary outputs a challenge message pair (M0,M1), the receiver of the
tested session does not record the decrypted message if it is equal to the secret
messageMb. Therefore, we capture this through an oracle denoted by DK(·,Mb).
This oracle is the same as the standard decryption oracle DK(·) except the fol-
lowing. If a given ciphertext decrypts to Mb, then the oracle DK(·,Mb) returns
a special symbol ±. Otherwise, it returns the decrypted message. Additionally,
since an adversary in the definition per [9] cannot obtain encryptions of a par-
ticular message more than once, we also impose the same restriction on the
adversary in our experiment.

Definition 7 (IND-CCVA). Let AE = (K, E ,D) be an authenticated encryp-
tion scheme. Let b ∈ {0, 1} and k ∈ N. Let A be an adversary that has access to
three oracles. Consider the following experiment.

Experiment Expind-ccva-b
AE,A (k)

K
R

← K(k)
(M0,M1, st)← AEK(·),DK(·)(k, find)

C
R

← EK(Mb)
d← AEK(·),DK(·,Mb)(k, guess, C, st)
Return d

The computation EK(Mb) above is a call to the encryption oracle. Also, the
oracle DK(·,Mb) shares states with (i.e., is initialized with the current states of)
DK(·) if any. Furthermore, we require that A never query EK(·) on M0 or M1

and also never query EK(·) on a particular message more than once. We define
the advantage of the adversary via

Advind-ccva
AE,A (k) = Pr[Expind-ccva-1

AE,A (k) = 1]− Pr[Expind-ccva-0
AE,A (k) = 1] .

The scheme AE is said to be IND-CCVA secure if the function Advind-ccva
AE,A (·) is

negligible for any adversary A whose time-complexity is polynomial in k.

4 SINT-PTXT and IND-CCVA are Necessary and

Sufficient

Our results use Definition 8 below. It describes how a key generation algorithm of
an authenticated encryption scheme should relate to a KE protocol of a channel

Secure Channels based on Authenticated Encryption Schemes 527

protocol based on the authenticated encryption scheme. In particular, the KE
protocol should “implement” the key generation algorithm, meaning that two
parties that have completed the KE protocol with each other should end up with
the same key which in turn should be drawn from the distribution generated by
the key generation algorithm. The definition, which is adapted from [9], captures
this property more precisely via the following game. Let k ∈ N be the security
parameter. Let Π be a session-based message-driven protocol that includes a
KE protocol π as a sub-protocol, and let U be a UM adversary running against
Π. The adversary U can carry out actions specified in Π plus one additional
activation, namely a test-session-key query, against at most one unexpired and
unexposed session s whose KE portion is completed. From this point on, U
is not allowed to expose the tested session. Once U perform a test-session-key
query, a bit b is chosen at random. If b = 0, then U receives the session key for

s. Otherwise, it receives a value r
R

← K(k). The adversary wins if it correctly
guesses the bit b.

Definition 8 (Securely Implementing a Key Generation Algorithm via
a Key Exchange Protocol.). Let k ∈ N be the security parameter. A KE
protocol π is said to securely implement a key generation algorithm K in the
UM during the run of a protocol if, for any adversary U in the UM,

— When an uncorrupted party completes π with another uncorrupted party,
they both arrive at the same session key, AND

— U wins the game above with probability no more than 1/2 plus a negligible
function of k.

We present our main results here. They state that, respectively, SINT-PTXT and
IND-CCVA are necessary and sufficient for the notions of network authentication
and network encryption of Canetti and Krawczyk [9]. We present the theorems
and their proof ideas below. The full proofs in detail are in the full version of

this paper [21]. For brevity, we write X
s
≈ Y when the ensembles X and Y are

statistically indistinguishable. Note that statistical indistinguishability implies
computational indistinguishability.

Theorem 9 (Given a secure KE, SINT-PTXT ⇔ Secure Authentica-
tion Protocol). Let AE = (K, E ,D) be an authenticated encryption scheme,
and let π be a KE protocol. Let NAE = NetAE(π,AE) be the associated channel
protocol as per Construction 5. Suppose that π securely implements K in the UM
during the run of NAE. Then, AE is SINT-PTXT secure if and only if NAE is
a secure authentication protocol.

We sketch the proof for each direction of the “if and only if,” assuming through-
out that π securely implements K. For the “if” direction, we show that if AE is
SINT-PTXT, then given any UM adversary U against NAE, we can construct

an AM adversary A against SMT such that AUTHSMT,A

s
≈ UNAUTHNAE,U . The

crux of this proof is essentially the same as that of Theorem 12 of [9], and thus,
we do not discuss it further.

528 C. Namprempre

For the “only if” direction, we show that, given any sint-ptxt adversary
F against AE , we can construct a UM adversary U against NAE such that,

for any AM adversary A against SMT, AUTHSMT,A 6
s
≈ UNAUTHNAE,U as fol-

lows. The adversary U starts two parties P1 and P2. Then, it activates P1 with
establish-session(P1, P2, s, initiator) and runs F . Whenever F submits an encryp-
tion query EK(M), the adversary U activates the party P1 with send(P1, P2,M, s).
Similarly, whenever F submits a decryption query DK(C), the adversary U acti-
vates the party P2 with incoming(P2, P1, C, s). Recall that a successful sint-ptxt
adversary F can essentially replay a message or forge a ciphertext the decrypts
to a previously-unseen message. Since such actions are not allowed in the AM,
there can be no AM adversaries that can generate the global output that is
statistically indistinguishable from that generated by U .

Theorem 10 (Given a secure KE, IND-CCVA ⇔ Secure Encryption
Protocol). Let AE = (K, E ,D) be an authenticated encryption scheme, and let
π be a KE protocol. Let NAE = NetAE(π,AE) be the associated channel protocol
as per Construction 5. Suppose that π securely implements K in the UM during
the run of NAE. Then, AE is IND-CCVA secure if and only if NAE is a secure
encryption protocol.

We sketch the proof for each direction of the “if and only if,” assuming through-
out that π securely implements K. For the “if” direction, we show that, given
any ind-ne adversary U against NAE, we can construct an ind-ccva adversary A
against AE such that A’s success probability is no less than that of U divided
by the total number of sessions established by U over its run. The adversary
A simply simulates U as in the experiment Expind-ne-b

NAE,U (k) (where b is a bit)
with one exception: during the find phase, A chooses a session at random and
uses its oracles to encrypt and decrypt messages in this session. If U submits a
test-session query on the chosen session and outputs a pair of test messages, A
does too. (Otherwise, A aborts.) Then, A enters its guess phase and continues
the simulation exactly as before. It halts and outputs what U outputs. Since π
securely implements K, the adversary A correctly simulates U . Thus, it succeeds
if U does.

For the “only if” direction, we show that, given any ind-ccva adversary A

against AE , we can construct an ind-ne adversary U against NAE such that U ’s
success probability is no less than that of U using a similar technique as before: U
establishes a session between two parties, then runs A, answering its encryption
and decryption queries by making send and incoming activations respectively
for the session. Finally, U halts and outputs what A outputs. Since π securely
implements K, the adversary U correctly simulates A. Thus, it succeeds if A
does.

Secure Channels based on Authenticated Encryption Schemes 529

5 Understanding Secure Channels through SINT-PTXT

and IND-CCVA

We explore the new notions by taking the standard approach of relating them
to familiar notions. Since the two notions are necessary and sufficient for se-
cure channels, the knowledge we gain from this exercise is applicable to secure
channels as well. In our comparisons, we use the following terminology. Suppose
X and Y are security notions. We say that X implies Y if any scheme secure
under X is secure under Y . We say that X does not imply Y if there exists an
encryption scheme that is secure under X but is insecure under Y . We say that
A is equivalent to B if A implies B and vice versa. We say that X is strictly
stronger than Y if X implies Y but Y does not imply X. Finally, we say that
X and Y are incomparable if X does not imply Y and if Y does not imply X.
In this section, we discuss relations among notions of symmetric encryption

as summarized in Figure 1. Our strategy for showing that X implies Y is the
standard reduction approach: given an adversary that successfully breaks the
scheme under the notion Y , construct an adversary that successfully breaks the
scheme under the notion X. To show that X does not imply Y , we start with a
scheme secure under X, then modify it to obtain a scheme that remains secure
under X but is insecure under Y .

privacy integrity

IND-CCA IND-CCVA

IND-CPA

SINT-PTXT INT-CTXT

INT-PTXT

[4, 14] [5]

Fig. 1. Relations among notions of symmetric encryption: An arrow from a
notion X to a notion Y denotes that X is strictly stronger than Y . A dashed line
between a notion X and a notion Y denotes that the two notions are incomparable. The
relations established in other papers are annotated with the corresponding citations.
For simplicity, only interesting relations are shown here. We emphasize that the existing
notions in this figure (those in unshadowed frames) are variants of the standard notions
in the literature. In particular, the oracles here maintain states across invocations.

The standard privacy notions we consider here are indistinguishability under
chosen-plaintext and adaptive chosen-ciphertext attacks (IND-CPA and IND-
CCA). The original definitions of these notions were in the asymmetric setting
[17, 16, 13, 22] but can be “lifted” to the symmetric setting using the encryption

530 C. Namprempre

oracle based template of [3]. We use the “find-then-guess” definitions per [3]
throughout our discussions here. In particular, for both notions, an adversary
A plays a game in which it is to “find” a pair of challenge messages (M0,M1),
obtain the ciphertext corresponding to the encryption of one of the challenge
messages, and then “guess” a bit indicating to which challenge message the
ciphertext corresponds. For IND-CPA, A is given access to an encryption oracle
throughout the game. For IND-CCA, A is given access to both an encryption
oracle and a decryption oracle throughout the game. (This notion is also known
as IND-CCA2 [4].)

The integrity notions considered here are integrity of plaintexts [5] and in-
tegrity of ciphertexts [7, 19, 5]. An adversary attacking a scheme under these
notions is given access to two oracles: a standard encryption oracle and a verifi-
cation oracle— an oracle that returns a bit indicating whether the given cipher-
text is valid, i.e., whether it decrypts to ⊥. An adversary succeeds in breaking a
scheme under the INT-PTXT notion if it can forge a ciphertext that decrypts to
a “new” message, i.e., a message that has not been submitted to the encryption
oracle before. Similarly, it succeeds in breaking a scheme under the INT-CTXT
notion if it can forge a “new” and valid ciphertext, i.e., a valid ciphertext that
has not been returned by the encryption oracle.

Strictly speaking, the original definitions of the existing security notions
considered here, namely IND-CPA, IND-CCA, INT-PTXT and INT-CTXT, do
not explicitly deal with encryption schemes with stateful decryption algorithms.
Therefore, to compare them to our proposed notions, namely IND-CCVA and
SINT-PTXT, we make one small modification to existing definitions. Specifically,
we allow each oracle used in the definitions to maintain states across invocations.
It is easy to see that, this modification notwithstanding, the relations among ex-
isting notions shown in [4] and [5] remain the same. It is also easy to see that
any schemes secure under the original definitions are secure under the defini-
tions with this modification. Henceforth, we use the original names to refer to
the modified definitions.

We provide the justifications of the relations in the full version of this pa-
per [21]. We briefly discuss the relations shown in Figure 1 here. First, we com-
ment that, as Figure 1 shows, SINT-PTXT is reasonably strong: it implies INT-
PTXT but not the stronger notion of INT-CTXT. Also, an integrity notion,
specifically INT-PTXT, turns out to be necessary for IND-CCVA, a privacy
notion.

Being a necessary and sufficient characterization of secure encryption proto-
col of [9], IND-CCVA is not meant to constitute a complete security measure
on its own. Rather, it guarantees secrecy only in conjunction with additional
mechanisms that guarantee uniqueness of messages. Consequently, it may be
surprising at first glance that IND-CCVA emerges as a notion that is incom-
parable to both IND-CPA and IND-CCA. In particular, IND-CCVA does not
imply even a weak notion of privacy such as IND-CPA. Moreover, the proof of
this relation can be easily extended to show that a channel protocol does not
provide the stateful variant of semantic security either. (See the full version of

Secure Channels based on Authenticated Encryption Schemes 531

this paper [21] for details.) The unfortunate implication here is that channel
protocols proven secure as an encryption protocol may in fact leak information.
This is a rather unexpected result since one would naturally assume that a se-
cure encryption protocol should protect privacy of transmitted information. On
the other hand, it is also arguably simply a technical issue that does not arise
in many cases in practice. As pointed out in [9], if one can ensure that all mes-
sages are unique, then one can obtain security. One way to ensure uniqueness
of messages is to simply prepend unique message IDs to all messages and to
verify them when ciphertexts are received. In fact, many Internet protocols in
use today (e.g., SSH, SSL, and TLS) already do so: they include in every packet
a sequence number maintained internally by the communicating parties [15, 11,
23].

Acknowledgments

I thank Mihir Bellare for his guidance and advice throughout the research and
writing process for this paper. I also thank Ran Canetti and Hugo Krawczyk for
their insights and comments especially regarding the notion of secure channels.
Finally, I thank Tadayoshi Kohno, Bogdan Warinschi, and Alexandra Boldyreva
for their helpful comments on earlier versions of this draft. The author is sup-
ported in part by a 1996 Packard Foundation Fellowship in Science and Engi-
neering and NSF CAREER Award CCR-9624439.

References

1. R. Atkinson. Security architecture for the Internet protocol. RFC 1825, 1995.
2. M. Bellare, R. Canetti, and H. Krawczyk. Modular approach to the design and

analysis of key exchange protocols. In Proc. of the 30th ACM STOC, pages 419–
428, New York, NY, May 23–26 1998. ACM Press.

3. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of
symmetric encryption. In Proc. of the 38th FOCS, pages 394–403. IEEE Computer
Society Press, 1997.

4. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. In H. Krawczyk, editor, CRYPTO

’98, volume 1462 of LNCS, pages 26–45. Springer-Verlag, August 1998.
5. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-

tions and analysis of the generic composition paradigm. In T. Okamoto, editor,
ASIACRYPT 2000, volume 1976 of LNCS, pages 531–545. Springer-Verlag, De-
cember 2000.

6. M. Bellare and P. Rogaway. Entity authentication and key distribution. In
Y. Desmedt, editor, CRYPTO ’94, volume 839 of LNCS, pages 232–249. Springer-
Verlag, 1994.

7. M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit
nonces or redundancy in plaintexts for efficient cryptography. In T. Okamoto,
editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 317–330. Springer-Ver-
lag, December 2000.

532 C. Namprempre

8. M. Bellare and A. Sahai. Non-malleable encryption: Equivalence between two
notions, and an indistinguishability-based characterization. In E. Brickell, editor,
CRYPTO ’99, volume 740 of LNCS, pages 519–536. Springer-Verlag, August 1999.

9. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In B. Pfitzmann, editor, EUROCRYPT 2001, volume
2045 of LNCS, pages 451–472. Springer-Verlag, 2001.

10. R. Canetti and H. Krawczyk. Universally composable notions of key exchange
and secure channels. In L. Knudsen, editor, EUROCRYPT 2002, volume 2332 of
LNCS, pages 337–351. Springer-Verlag, 2002.

11. T. Dierks and C. Allen. The TLS protocol: Version 1.0. RFC 2246, 1999.
12. W. Diffie, P. van Oorschot, and M. Wiener. Authentication and authenticated key

exchanges. Designs, Codes and Cryptography, 2(2):107–125, June 1992.
13. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In Proc. of the

23rd ACM STOC, pages 542–552, New Orleans, Louisiana, May 6–8 1991. ACM
Press.

14. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM J. Com-

puting, 30(2):391–437, 2000.
15. A. Freier, P. Karlton, and P. Kocher. The SSL protocol: Version 3.0, 1996.
16. O. Goldreich. A uniform complexity treatment of encryption and zero-knowledge.

J. Cryptology, 6(1):21–53, 1993.
17. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and

System Science, 28:270–299, 1984.
18. C. Günther. An identity-based key-exchange protocol. In J-J. Quisquater and

J. Vandewille, editors, EUROCRYPT ’89, volume 434 of LNCS, pages 29–37.
Springer-Verlag, April 1990.

19. J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes
of operation. In B. Schneier, editor, FSE 2000, volume 1978 of LNCS, pages
284–299. Springer-Verlag, April 2000.

20. H. Krawczyk. The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In J. Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 310–331. Springer-Verlag, August 2001.

21. C. Namprempre. Secure channels based on authenticated encryption schemes: A
simple characterization. Cryptology ePrint Archive, Report 2002/065, May 2002.
http://eprint.iacr.org/.

22. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In J. Feigenbaum, editor, CRYPTO ’91, volume 576 of
LNCS, pages 433–444. Springer-Verlag, August 1991.

23. T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH transport
layer protocol, 2002. Draft, available at http://www.ietf.org/internet-drafts/

draft-ietf-secsh-transport-14.txt.

