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Abstract. In [1], Bernstein proposed a circuit-based implementation of
the matrix step of the number field sieve factorization algorithm. These
circuits offer an asymptotic cost reduction under the measure “construc-
tion cost × run time”. We evaluate the cost of these circuits, in agreement
with [1], but argue that compared to previously known methods these
circuits can factor integers that are 1.17 times larger, rather than 3.01
as claimed (and even this, only under the non-standard cost measure).
We also propose an improved circuit design based on a new mesh rout-
ing algorithm, and show that for factorization of 1024-bit integers the
matrix step can, under an optimistic assumption about the matrix size,
be completed within a day by a device that costs a few thousand dollars.
We conclude that from a practical standpoint, the security of RSA relies
exclusively on the hardness of the relation collection step of the number
field sieve.
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1 Introduction

In [1], a new circuit-based approach is proposed for one of the steps of the
number field sieve (NFS) integer factorization method, namely finding a linear
relation in a large but sparse matrix. Unfortunately, the proposal from [1] has
been misinterpreted on a large scale, even to the extent that announcements
have been made that the results imply that common RSA key sizes no longer
provide an adequate level of security.
In this paper we attempt to give a more balanced interpretation of [1]. In

particular, we show that 1024-bit RSA keys are as secure as many believed
them to be. Actually, [1] provides compelling new evidence that supports a
traditional and widely used method to evaluate the security of RSA moduli. We
present a variant of the analysis of [1] that would suggest that, under the metric
proposed in [1], the number of digits of factorable integers n has grown by a
factor 1.17 + o(1), for n→∞ (in [1] a factor of 3.01 + o(1) is mentioned).
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We propose an improved circuit design, based on mesh routing rather than
mesh sorting. To this end we describe a new routing algorithm whose perfor-
mance in our setting seems optimal. With some further optimizations, the con-
struction cost is reduced by several orders of magnitude compared to [1]. In the
improved design the parallelization is gained essentially for free, since its cost is
comparable to the cost of RAM needed just to store the input matrix.
We estimate the cost of breaking 1024-bit RSA with current technology. Using

custom-built hardware to implement the improved circuit, the NFS matrix step
becomes surprisingly inexpensive. However, the theoretical analysis shows that
the cost of the relation collection step cannot be significantly reduced, regardless
of the cost of the matrix step. We thus conclude that the practical security of
RSA for commonly used modulus sizes is not significantly affected by [1].
Section 2 reviews background on the NFS; it does not contain any new mate-

rial and simply serves as an explanation and confirmation of the analysis from [1].
Section 3 sketches the circuit approach of [1] and considers its implications. Sec-
tion 4 discusses various cost-aspects of the NFS. Section 5 focuses on 1024-bit
numbers, presenting custom hardware for the NFS matrix step both following [1]
and using the newly proposed circuit. Section 6 summarizes our conclusions. Ap-
pendices A and B outline the limitations of off-the-shelf parts for the mesh-based
approach and the traditional approach, respectively. Throughout this paper, n
denotes the composite integer to be factored. Prices are in US dollars.

2 Background on the number field sieve

In theory and in practice the two main steps of the NFS are the relation collection

step and the matrix step. We review their heuristic asymptotic runtime analysis
because it enables us to stress several points that are important for a proper
understanding of “standard-NFS” and of “circuit-NFS” as proposed in [1].

2.1 Smoothness. An integer is called B-smooth if all its prime factors are at
most B. Following [10, 3.16] we denote by Lx[r;α] any function of x that equals

e(α+o(1))(log x)r(log log x)1−r

, for x→∞,

where α and r are real numbers with 0 ≤ r ≤ 1 and logarithms are natural.
Thus, Lx[r;α] + Lx[r;β] = Lx[r;max(α, β)], Lx[r;α]Lx[r;β] = Lx[r;α + β],
Lx[r;α]Lx[s;β] = Lx[r;α] if r < s, Lx[r, α]

k = Lx[r, kα] and if α > 0 then
(log x)kLx[r;α] = Lx[r;α] for any fixed k, and π(Lx[r;α]) = Lx[r;α] where π(y)
is the number of primes ≤ y.
Let α > 0, β > 0, r, and s be fixed real numbers with 0 < s < r ≤ 1. A

random positive integer ≤ Lx[r;α] is Lx[s;β]-smooth with probability

Lx[r − s;−α(r − s)/β], for x→∞.

We abbreviate Ln to L and L[1/3, α] to L(α). Thus, a random integer ≤ L[2/3, α]
is L(β)-smooth with probability L(−α/(3β)). The notation L1.901···+o(1) in [1]
corresponds to L(1.901 · · · ) here. We write “ζ o=x” for “ζ = x+o(1) for n→∞.”
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2.2 Ordinary NFS. To factor n using the NFS, more or less following the
approach from [11], one selects a positive integer

d = δ

(
log n

log log n

)1/3

for a positive value δ that is yet to be determined, an integer m close to n1/(d+1),
a polynomial f(X) =

∑d
i=0 fiX

i ∈ Z[X] such that f(m) ≡ 0 mod n with each fi
of the same order of magnitude as m, a rational smoothness bound Br, and an
algebraic smoothness bound Ba. Other properties of these parameters are not
relevant for our purposes.
A pair (a, b) of integers is called a relation if a and b are coprime, b > 0,

a− bm is Br-smooth, and bdf(a/b) is Ba-smooth. Each relation corresponds to
a sparse D-dimensional bit vector with

D ≈ π(Br) + #{(p, r) : p prime ≤ Ba, f(r) ≡ 0 mod p} ≈ π(Br) + π(Ba)

(cf. [11]). In the relation collection step a set of more than D relations is sought.
Given this set, one or more linear dependencies modulo 2 among the correspond-
ingD-dimensional bit vectors are constructed in the matrix step. Per dependency
there is a chance of at least 50% (exactly 50% for RSA moduli) that a factor
of n is found in the final step, the square root step. We discuss some issues of
the relation collection and matrix steps that are relevant for [1].

2.3 Relation collection. We restrict the search for relations to the rectangle
|a| < L(α), 0 < b < L(α) and use Br and Ba that are both L(β) (which does
not imply that Br = Ba), for α, β > 0 that are yet to be determined. It follows
(cf. 2.1) that D = L(β). Furthermore,

|a− bm| = L[2/3, 1/δ] and |bdf(a/b)| = L[2/3, αδ + 1/δ].

With 2.1 and under the usual assumption that a − bm and bdf(a/b) behave,
with respect to smoothness probabilities, independently as random integers of
comparable sizes, the probability that both are L(β)-smooth is

L

(−1/δ
3β

)

· L
(−αδ − 1/δ

3β

)

= L

(

−αδ + 2/δ

3β

)

.

The search space contains 2L(α)2 = 2L(2α) = L(2α) pairs (a, b) and, due to the
o(1), as many pairs (a, b) with gcd(a, b) = 1. It follows that α and β must be
chosen such that

L(2α) · L
(

−αδ + 2/δ

3β

)

= L(β) (= D).

We find that

α o=
3β2 + 2/δ

6β − δ
. (1)
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2.4 Testing for smoothness. The (a, b) search space can be processed in
L(2α) operations. If sufficient memory is available this can be done using siev-
ing. Current PC implementations intended for the factorization of relatively
small numbers usually have adequate memory for sieving. For much larger num-
bers and current programs, sieving would become problematic. In that case, the
search space can be processed in the “same” L(2α) operations (with an, admit-
tedly, larger o(1)) but at a cost of only L(0) memory using the Elliptic Curve
Method (ECM) embellished in any way one sees fit with trial division, Pollard
rho, early aborts, etc., and run on any number K of processors in parallel to
achieve a K-fold speedup. This was observed many times (see for instance [10,
4.15] and [4]). Thus, despite the fact that current implementations of the relation
collection require substantial memory, it is well known that asymptotically this
step requires negligible memory without incurring, in theory, a runtime penalty
– in practice, however, it is substantially slower than sieving. Intermediate so-
lutions that exchange sieving memory for many tightly coupled processors with
small memories could prove valuable too; see [6] for an early example of this
approach and [1] for various other interesting proposals that may turn out to be
practically relevant. For the asymptotic argument, ECM suffices.
In improved NFS from [4] it was necessary to use a “memory-free” method

when searching for Ba-smooth numbers (cf. 2.2), in order to achieve the speedup.
It was suggested in [4] that the ECM may be used for this purpose. Since memory
usage was no concern for the analysis in [4], regular “memory-wasteful” sieving
was suggested to test Br-smoothness.

2.5 The matrix step. The choices made in 2.3 result in a bit matrix A con-
sisting of D = L(β) columns such that each column of A contains only L(0)
nonzero entries. Denoting by w(A) the total number of nonzero entries of A (its
weight), it follows that w(A) = L(β) · L(0) = L(β). Using a variety of tech-
niques [5, 13], dependencies can be found after, essentially, O(D) multiplications
of A times a bit vector. Since one matrix-by-vector multiplication can be done in
O(w(A)) = L(β) operations, the matrix step can be completed in L(β)2 = L(2β)
operations. We use “standard-NFS” to refer to NFS that uses a matrix step with
L(2β) operation count.
We will be concerned with a specific method for finding the dependencies in

A, namely the block Wiedemann algorithm [5][18] whose outline is as follows. Let
K be the blocking factor, i.e., the amount of parallelism desired. We may assume
that either K = 1 or K > 32. Choose 2K binary D-dimensional vectors ~vi, ~uj for
1 ≤ i, j ≤ K. For each i, compute the vectors Ak~vi for k up to roughly 2D/K,
using repeated matrix-by-vector multiplication. For each such vector Ak~vi, com-
pute the inner products ~ujA

k~vi, for all j. Only these inner products are saved, to
conserve storage. From the inner products, compute certain polynomials fl(x),
l = 1, . . . ,K of degree about D/K. Then evaluate fl(A)~vi, for all l and i (take
one ~vi at a time and evaluate fl(A)~vi for all l simultaneously using repeated
matrix-by-vector multiplications). From the result, K elements from the kernel
of A can be computed. The procedure is probabilistic, but succeeds with high
probability for K À 1 [17]. For K = 1, the cost roughly doubles [18].
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For reasonable blocking factors (K = 1 or 32 ≤ K ¿
√
D), the block Wiede-

mann algorithm involves about 3D matrix-by-vector multiplications. These mul-
tiplications dominate the cost of the matrix step; accordingly, the circuits of [1],
and our variants thereof, aim to reduce their cost. Note that the multiplications
are performed in 2K separate chains where each chain involves repeated left-
multiplication by A. The proposed circuits rely on this for their efficiency. Thus,
they appear less suitable for other dependency-finding algorithms, such as block
Lanczos [13] which requires just 2D multiplications.

2.6 NFS parameter optimization for matrix exponent 2ε > 1. With
the relation collection and matrix steps in L(2α) and L(2β) operations, respec-
tively, the values for α, β, and δ that minimize the overall NFS operation count
follow using Relation (1). However, we also need the optimal values if the “cost”
of the matrix step is different from L(β)2: in [1] “cost” is defined using a metric
that is not always the same as operation count, so we need to analyse the NFS
using alternative cost metrics. This can be done by allowing flexibility in the
“cost” of the matrix step: we consider how to optimize the NFS parameters for
an L(β)2ε matrix step, for some exponent ε > 1/2. The corresponding relation
collection operation count is fixed at L(2α) (cf. 2.4).
We balance the cost of the relation collection and matrix steps by taking

α o= εβ. With (1) it follows that

3(2ε− 1)β2 − εβδ − 2/δ o=0, so that β o=
εδ +

√

ε2δ2 + 24(2ε− 1)/δ
6(2ε− 1) .

Minimizing β given ε leads to

δ o= 3
√

3(2ε− 1)/ε2 (2)

and
β o=2 3

√

ε/(3(2ε− 1))2. (3)

Minimizing the resulting

α o=2ε 3
√

ε/(3(2ε− 1))2 (4)

leads to ε = 1 and α o=2/32/3: even though ε < 1 would allow more “relaxed”
relations (i.e., larger smoothness bounds and thus easier to find), the fact that
more of such relations have to be found becomes counterproductive. It follows
that an operation count of L(4/32/3) is optimal for relation collection, but that
for 2ε > 2 it is better to use suboptimal relation collection because otherwise the
matrix step would dominate. We find the following optimal NFS parameters:

1 < 2ε ≤ 2:
δ o=31/3, α o=2/32/3, and β o=2/32/3, with operation counts of relation col-
lection and matrix steps equal to L(4/32/3) and L(4ε/32/3), respectively.
For ε = 1 the operation counts of the two steps are the same (when ex-
pressed in L) and the overall operation count is L(4/32/3) = L((64/9)1/3) =
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L(1.9229994 · · · ). This corresponds to the heuristic asymptotic runtime of
the NFS as given in [11]. We refer to these parameter choices as the ordinary

parameter choices.
2ε > 2:

δ, α, and β as given by Relations (2), (4), and (3), respectively, with operation
count L(2α) for relation collection and cost L(2εβ) for the matrix step, where
L(2α) = L(2εβ). More in particular, we find the following values.

2ε = 5/2:
δ o=(5/3)1/3(6/5), α o=(5/3)1/3(5/6), and β o=(5/3)1/3(2/3), for an operation
count and cost L((5/3)4/3) = L(1.9760518 · · · ) for the relation collection
and matrix steps, respectively. These values are familiar from [1, Section 6:
Circuits]. With (1.9229994 · · · /1.9760518 · · · + o(1))3 o=0.9216 and equating
operation count and cost, this suggests that factoring 0.9216 · 512 ≈ 472-bit
composites using NFS with matrix exponent 5/2 is comparable to factoring
512-bit ones using standard-NFS with ordinary parameter choices (disre-
garding the effects of the o(1)’s).

2ε = 3:
δ o=2/31/3, α o=32/3/2, and β o=3−1/3, for an operation count and cost of
L(32/3) = L(2.0800838 · · · ) for the relation collection and matrix steps, re-
spectively.

2.7 Improved NFS. It was shown in [4] that ordinary NFS from [11], and as
used in 2.2, can be improved by using more than a single polynomial f . Let α and
δ be as in 2.3 and 2.2, respectively, let β indicate the rational smoothness bound
Br (i.e., Br = L(β)), and let γ indicate the algebraic smoothness bound Ba (i.e.,
Ba = L(γ)). Let G be a set of Br/Ba = L(β − γ) different polynomials, each of
degree d and common root m modulo n (as in 2.2). A pair (a, b) of integers is
a relation if a and b are coprime, b > 0, a − bm is Br-smooth, and bdg(a/b) is
Ba-smooth for at least one g ∈ G. Let ε be the matrix exponent. Balancing the
cost of the relation collection and matrix steps it follows that α o= εβ.
Optimization leads to

γ o=

(

ε2 + 5ε+ 2 + (ε+ 1)
√
ε2 + 8ε+ 4

9(2ε+ 1)

)1/3

and for this γ to

α o=
9γ3 + 1 +

√

18γ3(2ε+ 1) + 1

18γ2
, β o=α/ε,

and

δ o=
3γ(−4ε− 1 +

√

18γ3(2ε+ 1) + 1)

9γ3 − 4ε .

It follows that for 2ε = 2 the method from [4] gives an improvement over the
ordinary method, namely L(1.9018836 · · · ). The condition β ≥ γ leads to 2ε ≤
7/3, so that for 2ε > 7/3 (as in circuit-NFS, cf. 3.1) usage of the method from [4]
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no longer leads to an improvement over the ordinary method. This explains why
in [1] the method from [4] is used to select parameters for standard-NFS and
why the ordinary method is used for circuit-NFS.
With 2.1 it follows that the sum of the (rational) sieving and ECM-based

(algebraic) smoothness times from [4] (cf. last paragraph of 2.4) is minimized
if β = γ + 1/(3βδ). The above formulas then lead to 2ε = (3 +

√
17)/4 =

1.7807764 · · · . Therefore, unlike the ordinary parameter selection method, opti-
mal relation collection for the improved method from [4] occurs for an ε with
2ε < 2: with ε = 0.8903882 · · · the operation count for relation collection be-
comes L(1.8689328 · · · ). Thus, in principle, and depending on the cost function
one is using, the improved method would be able to take advantage of a matrix
step with exponent 2ε < 2. If we disregard the matrix step and minimize the op-
eration count of relation collection, this method yields a cost of L(1.8689328 · · · ).

3 The circuits for integer factorization from [1]

3.1 Matrix-by-vector multiplication using mesh sorting. In [1] an in-
teresting new mesh-sorting-based method is described to compute a matrix-by-
vector product. Let A be the bit matrix from 2.5 with D = L(β) columns and
weight w(A) = L(β), and letm be the least power of 2 such thatm2 > w(A)+2D.
Thus m = L(β/2). We assume, without loss of generality, that A is square. A
mesh of m ×m processors, each with O(logD) = L(0) memory, initially stores
the matrix A and a not necessarily sparse D-dimensional bit vector ~v. An ele-
gant method is given that computes the product A~v using repeated sorting in
O(m) steps, where each step involves a small constant number of simultaneous
operations on all m × m mesh processors. At the end of the computation A~v
can easily be extracted from the mesh. Furthermore, the mesh is immediately,
without further changes to its state, ready for the computation of the product
of A and the vector A~v. We use “circuit-NFS” to refer to NFS that uses the
mesh-sorting-based matrix step.

3.2 The throughput cost function from [1]. Judging by operation counts,
the mesh-based algorithm is not competitive with the traditional way of com-
puting A~v: as indicated in 2.5 it can be done in O(w(A)) = L(β) operations. The
mesh-based computation takes O(m) steps on all m×m mesh processors simul-
taneously, resulting in an operation count per matrix-by-vector multiplication
of O(m3) = L(3β/2). Iterating the matrix-by-vector multiplications L(β) times
results in a mesh-sorting-based matrix step that requires L(5β/2) = L(β)5/2

operations as opposed to just L(2β) for the traditional approach. This explains
the non-ordinary relation collection parameters used in [1] corresponding to the
analysis given in 2.6 for 2ε = 5/2, something we comment upon below in 3.3.
However, the standard comparison of operation counts overlooks the follow-

ing fact. The traditional approach requires memory O(w(A) + D) = L(β) for
storage of A and the vector; given that amount of memory it takes time L(2β).
But given the m×m mesh, with m×m = L(β), the mesh-based approach takes
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time just L(3β/2) because during each unit of time L(β) operations are carried
out simultaneously on the mesh. To capture the advantage of “active small pro-
cessors” (as in the mesh) compared to “inactive memory” (as in the traditional
approach) and the fact that their price is comparable, it is stipulated in [1] that
the cost of factorization is “the product of the time and the cost of the machine.”
We refer to this cost function as throughput cost, since it can be interpreted
as measuring the equipment cost per unit problem-solving throughput. It is fre-
quently used in VLSI design (where it’s known as “AT cost”, for Area×Time),
but apparently was not used previously in the context of computational number
theory.

It appears that throughput cost is indeed appropriate when a large number of
problems must be solved during some long period of time while minimizing total
expenses. This does not imply that throughput cost is always appropriate for
assessing security, as illustrated by the following example. Suppose Carrol wishes
to assess the risk of her encryption key being broken by each of two adversaries,
Alice and Bob. Carrol knows that Alice has plans for a device that costs $1M
and takes 50 years to break a key, and that Bob’s device costs $50M and takes
1 year to break a key. In one scenario, each adversary has a $1M budget —
clearly Alice is dangerous and Bob is not. In another scenario, each adversary
has a $50M budget. This time both are dangerous, but Bob apparently forms a
greater menace because he can break Carrol’s key within one year, while Alice
still needs 50 years. Thus, the two devices have the same throughput cost, yet
either can be more “dangerous” than the other, depending on external settings.
The key point is that if Alice and Bob have many keys to break within 50 years
then indeed their cost-per-key figures are identical, but the time it will take Bob
to break Carrol’s key depends on her priority in his list of victims, and arguably
Carrol should make the paranoid assumption that she is first.

In Section 4 we comment further on performance measurement for the NFS.

3.3 Application of the throughput cost. The time required for all matrix-
by-vector multiplications on the mesh is L(3β/2). The equipment cost of the
mesh is the cost of m2 small processors with L(0) memory per processor, and
is thus L(β). The throughput cost, the product of the time and the cost of the
equipment, is therefore L(5β/2). The matrix step of standard-NFS requires time
L(2β) and equipment cost L(β) for the memory, resulting in a throughput cost
of L(3β). Thus, the throughput cost advantage of the mesh-based approach is a
factor L(β/2) if the two methods would use the same β (cf. Remark 3.4).

The same observation applies if the standard-NFS matrix step is K-fold
parallelized, for reasonable K (cf. 2.5): the time drops by a factor K which is
cancelled (in the throughput cost) by a K times higher equipment cost because
each participating processor needs the same memory L(β). In circuit-NFS (i.e.,
the mesh) a parallelization factor m2 is used: the time drops by a factor only m
(not m2), but the equipment cost stays the same because memory L(0) suffices
for each of the m2 participating processors. Thus, with the throughput cost
circuit-NFS achieves an advantage of m = L(β/2). The mesh itself can of course
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be K-fold parallelized but the resulting K-fold increase in equipment cost and
K-fold drop in time cancel each other in the throughput cost [1, Section 4].

Remark 3.4 It can be argued that before evaluating an existing algorithm
based on a new cost function, the algorithm first should be tuned to the new
cost function. This is further commented upon below in 3.5.

3.5 Implication of the throughput cost. We consider the implication of
the matrix step throughput cost of L(5β/2) for circuit-NFS compared to L(3β)
for standard-NFS. In [1] the well known fact is used that the throughput cost
of relation collection is L(2α) (cf. 2.4): an operation count of L(2α) on a single
processor with L(0) memory results in time L(2α), equipment cost L(0), and
throughput cost L(2α). This can be time-sliced in any way that is convenient,
i.e., for any K use K processors of L(0) memory each and spend time L(2α)/K
on all K processors simultaneously, resulting in the same throughput cost L(2α).
Thus, for relation collection the throughput cost is proportional to the operation
count. The analysis of 2.6 applies with 2ε = 5/2 and leads to an optimal overall
circuit-NFS throughput cost of L(1.9760518 · · · ). As mentioned above and in 3.2,
the throughput cost and the operation count are equivalent for both relation
collection and the matrix step of circuit-NFS. Thus, as calculated in 2.6, circuit-
NFS is from an operation count point of view less powerful than standard-
NFS, losing already 40 bits in the 500-bit range (disregarding the o(1)’s) when
compared to standard-NFS with ordinary parameter choices. This conclusion
applies to any NFS implementation, such as many existing ones, where memory
requirements are not multiplicatively included in the cost function.
But operation count is not the point of view taken in [1]. There standard-NFS

is compared to circuit-NFS in the following way. The parameters for standard-
NFS are chosen under the assumption that the throughput cost of relation col-
lection is L(3α): operation count L(2α) and memory cost L(α) for the sieving
result in time L(2α)/K and equipment cost K · L(α) (for any K-fold paral-
lelization) and thus throughput cost L(3α). This disregards the fact that long
before [1] appeared is was known that the use of L(α) memory per processor
may be convenient, in practice and for relatively small numbers, but is by no
means required (cf. 2.4). In any case, combined with L(3β) for the through-
put cost of the matrix step this leads to α o=β, implying that the analysis
from 2.6 with 2ε = 2 applies, but that the resulting operation count must be
raised to the 3/2-th power. In [1] the improvement from [4] mentioned in 2.7
is used, leading to a throughput cost for standard-NFS of L(2.8528254 · · · )
(where 2.8528254 · · · is 1.5 times the 1.9018836 · · · referred to in 2.7). Since
(2.8528254 · · · /1.9760518 · · · )3 = 3.0090581 · · · , it is suggested in [1] that the
number of digits of factorable composites grows by a factor 3 if circuit-NFS is
used instead of standard-NFS.

3.6 Alternative interpretation. How does the comparison between circuit-
NFS and standard-NFS with respect to their throughput costs turn out if standard-
NFS is first properly tuned (Remark 3.4) to the throughput cost function, given
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the state of the art in, say, 1990 (cf. [10, 4.15]; also the year that [4] originally ap-
peared)? With throughput cost L(2α) for relation collection (cf. above and 2.4),
the analysis from 2.6 with 2ε = 3 applies, resulting in a throughput cost of just
L(2.0800838 · · · ) for standard-NFS. Since (2.0800838 · · · /1.9760518 · · · )3 < 1.17,
this would suggest that 1.17D-digit composites can be factored using circuit-NFS
for the throughput cost of D-digit integers using standard-NFS. The significance
of this comparison depends on whether or not the throughput cost is an accept-
able way of measuring the cost of standard-NFS. If not, then the conclusion
based on the operation count (as mentioned above) would be that circuit-NFS
is slower than standard-NFS; but see Section 4 for a more complete picture.
Other examples where it is recognized that the memory cost of relation collec-
tion is asymptotically not a concern can be found in [12] and [9], and are implied
by [14].

Remark 3.7 It can be argued that the approach in 3.6 of replacing the ordi-
nary standard-NFS parameters by smaller smoothness bounds in order to make
the matrix step easier corresponds to what happens in many actual NFS fac-
torizations. There it is done not only to make the matrix step less cumbersome
at the cost of somewhat more sieving, but also to make do with available PC
memories. Each contributing PC uses the largest smoothness bounds and siev-
ing range that fit conveniently and that cause minimal interference with the
PC-owner’s real work. Thus, parameters may vary from machine to machine.
This is combined with other memory saving methods such as “special-q’s.” In
any case, if insufficient memory is available for sieving with optimal ordinary
parameters, one does not run out to buy more memory but settles for slight
suboptimality, with the added benefit of an easier matrix step. See also 4.1.

Remark 3.8 In [19], Wiener outlines a three-dimensional circuit for the matrix
step, with structure that is optimal in a certain sense (when considering the cost
of internal wiring). This design leads to a matrix step exponent of 2ε = 7/3,
compared to 5/2 in the designs of [1] and this paper. However, adaptation of that
design to two dimensions yields a matrix step exponent that is asymptotically
identical to ours, and vice versa. Thus the approach of [19] is asymptotically
equivalent to ours, while its practical cost remains to be evaluated. We note
that in either approach, there are sound technological reasons to prefer the 2D
variant. Interestingly, 2ε = 7/3 is the point where improved and standard NFS
become the same (cf. 2.7).

4 Operation count, equipment cost, and real time

The asymptotic characteristics of standard-NFS and circuit-NFS with respect
to their operation count, equipment, and real time spent are summarized in
Table 1. For non-L(0) equipment requirements it is specified if the main cost
goes to memory (“RAM”), processing elements (“PEs”) with L(0) memory, or
a square mesh as in 3.1, and “tuned” refers to the alternative analysis in 3.6.
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The underlined operation counts are the same as the corresponding throughput
costs. For the other operation count the throughput cost (not optimized if no
sieving is used) follows by taking the maximum of the products of the figures
in the “equipment” and “real time” columns. Relation collection, whether using
sieving or not, allows almost arbitrary parallelization (as used in the last two
rows of Table 1). The amount of parallelization allowed in the matrix step of
standard-NFS is much more limited (cf. 2.5); it is not used in Table 1.

Table 1. NFS costs: operation count, equipment, and real time.

overall
operation
count

relation collection
︷ ︸︸ ︷

equipment
real
time

matrix step
︷ ︸︸ ︷

equipment
real
time

standard-NFS:
{
sieving
no sieving

L(1.90)

{
L(0.95) RAM
L(0)

L(1.90) L(0.95) RAM L(1.90)

tuned no sieving L(2.08)
sequential: L(0)
parallel: L(0.69) PEs

L(2.08)
L(1.39)

L(0.69) RAM L(1.39)

circuit-NFS: L(1.98)
sequential: L(0)
parallel: L(0.79) PEs

L(1.98)
L(1.19)

L(0.79) mesh L(1.19)

4.1 Lowering the cost of the standard-NFS matrix step. We show
at what cost the asymptotic advantages of the circuit-NFS matrix step (low
throughput cost and short real time) can be matched, asymptotically, using
the traditional approach to the matrix step. This requires a smaller matrix,
i.e., lower smoothness bounds, and results therefore in slower relation collec-
tion. We illustrate this with two examples. To get matching throughput costs
for the matrix steps of standard-NFS and circuit-NFS, β must be chosen such
that L(3β) = L((5/3)4/3) = L(1.9760 · · · ), so that the matrix step of standard-
NFS requires L(β) = L(0.6586 · · · ) RAM and real time L(2β) = L(1.3173 · · · ).
Substituting this β in Relation (1) and minimizing α with respect to δ we find

δ o=

√

4 + 36β3 − 2
3β2

, (5)

i.e., δ o=1.3675 · · · and α o=1.0694 · · · , resulting in relation collection operation
count L(2.1389 · · · ). Or, one could match the real time of the matrix steps:
with L(2β) = L((5/3)1/3) = L(1.1856 · · · ) the matrix step of standard-NFS
requires L(0.5928 · · · ) RAM and real time L(1.1856 · · · ). With Relation (5) we
find that δ o=1.3195 · · · , α o=1.1486 · · · , and relation collection operation count
L(2.2973 · · · ).
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4.2 Operation count based estimates. Operation count is the traditional
way of measuring the cost of the NFS. It corresponds to the standard complexity
measure of “runtime” and neglects the cost of memory or other equipment that is
needed to actually “run” the algorithm. It was used, for instance, in [11] and [4]
and was analysed in 2.6 and 2.7.
It can be seen in Table 1, and was indicated in 3.5, that the operation count

for circuit-NFS is higher than for standard-NFS (assuming both methods are
optimized with respect to the operation count): L(1.9760518 · · · ) as opposed to
just L(1.9018836 · · · ) when using the improved version (cf. 2.7) as in Table 1,
or as opposed to L(1.9229994 · · · ) when using the ordinary version (cf. 2.6) as
in 3.5. Thus, RSA moduli that are deemed sufficiently secure based on standard-
NFS operation count security estimates, are even more secure when circuit-
NFS is considered instead. Such estimates are common; see for instance [14]
and the “computationally equivalent” estimates in [9, 12]. Security estimates
based on the recommendations from [14] or the main ones (i.e., the conservative
“computationally equivalent” ones) from [9, 12] are therefore not affected by the
result from [1]. Nevertheless, we agree with [2] that the PC-based realization
suggested in [12], meant to present an at the time possibly realistic approach
that users can relate to, may not be the best way to realize a certain operation
count; see also the last paragraph of [12, 2.4.7]. The estimates from [15] are
affected by [1].

Remark 4.3 Historically, in past factorization experiments the matrix step
was always solved using a fraction of the effort required by relation collection.
Moreover, the memory requirements of sieving-based relation collection have
never turned out to be a serious problem (it was not even necessary to fall back
to the memory-efficient ECM and its variations). Thus, despite the asymptotic
analysis, extrapolation from past experience would predict that the bottleneck
of the NFS method is relation collection, and that simple operation count is a
better practical cost measure for NFS than other measures that are presumably
more realistic. The choice of cost function in [9, 12] was done accordingly.
The findings of [1] further support this conservative approach, by going a long

way towards closing the gap between the two measures of cost when applied to
the NFS: 93% of the gap according to 3.5, and 61% according to 3.6.

5 Hardware for the matrix step for 1024-bit moduli

In this section we extrapolate current factoring knowledge to come up with rea-
sonable estimates for the sizes of the matrix A that would have to be processed for
the factorization of a 1024-bit composite when using ordinary relation collection
(cf. 2.6), and using slower relation collection according to matrix exponent 5/2
as used in circuit-NFS. For the latter (smaller sized) matrix we consider how
expensive it would be to build the mesh-sorting-based matrix-by-vector multi-
plication circuit proposed in [1] using custom-built hardware and we estimate
how much time the matrix step would take on the resulting device. We then
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propose an alternative mesh-based matrix-by-vector multiplication circuit and
estimate its performance for both matrices, for custom-built and off-the-shelf
hardware.
Throughout this section we are interested mainly in assessing feasibility, for

the purpose of evaluating the security implications. Our assumptions will be
somewhat optimistic, but we believe that the designs are fundamentally sound
and give realistic indications of feasibility using technology that is available in
the present or in the near future.

5.1 Matrix sizes. For the factorization of RSA-512 the matrix had about 6.7
million columns and average column density about 63 [3]. There is no doubt
that this matrix is considerably smaller than a matrix that would have resulted
from ordinary relation collection as defined in 2.6, cf. Remark 3.7. Nevertheless,
we make the optimistic assumption that this is the size that would result from
ordinary relation collection.
Combining this figure with the L(2/32/3) matrix size growth rate (cf. 2.6) we

find

6 700 000 · L21024 [1/3, 2/32/3]

L2512 [1/3, 2/32/3]
≈ 1.8 · 1010

(cf. 2.1). Including the effect of the o(1) it is estimated that an optimal 1024-bit
matrix would contain about 1010 columns. We optimistically assume an average
column density of about 100. We refer to this matrix as the “large” matrix.
Correcting this matrix size for the L((5/3)1/3(2/3)) matrix size growth rate

for matrix exponent 5/2 (cf. 2.6) we find

1.8 · 1010 · L21024 [1/3, (5/3)1/3(2/3)]

L21024 [1/3, 2/32/3]
≈ 8.7 · 107.

We arrive at an estimate of about 4 · 107 columns for the circuit-NFS 1024-
bit matrix. We again, optimistically, assume that the average column density is
about 100. We refer to this matrix as the “small” matrix.

5.2 Estimated relation collection cost. Relation collection for RSA-512
could have been done in about 8 years on a 1GHz PC [3]. Since

8 · L21024 [1/3, 4/32/3]

L2512 [1/3, 4/32/3]
≈ 6 · 107

we estimate that generating the large matrix would require about a year on
about 30 million 1GHz PCs with large memories (or more PC-time but less
memory when using alternative smoothness tests – keep in mind, though, that
it may be possible to achieve the same operation count using different hardware,
as rightly noted in [1] and speculated in [12, 2.4.7]). With

L21024 [1/3, (5/3)4/3]

L21024 [1/3, 4/32/3]
≈ 5
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it follows that generating the smaller matrix would require about 5 times the
above effort. Neither computation is infeasible. But, it can be argued that 1024-
bit RSA moduli provide a reasonable level of security just based on the operation
count of the relation collection step.

5.3 Processing the “small” matrix using Bernstein’s circuits. We es-
timate the size of the circuit required to implement the mesh circuit of [1] when
the NFS parameters are optimized for the throughput cost function and 1024-bit
composites. We then derive a rough prediction of the associated costs when the
mesh is implemented by custom hardware using current VLSI technology. In this
subsection we use the circuit exactly as described in [1]; the next subsections will
make several improvements, including those listed as future plans in [1].
In [1], the algorithm used for finding dependencies among the columns of A is

Wiedemann’s original algorithm [18], which is a special case of block Wiedemann
with blocking factor K=1 (cf. 2.5). In the first stage (inner product computa-
tion), we are given the sparse D×D matrix A and some pair of vectors ~u,~v and
wish to calculate ~uAk~v for k = 1, . . . , 2D. The polynomial evaluation stage is
slightly different, but the designs given below can be easily adapted so we will
not discuss it explicitly.
The mesh consists of m × m nodes, where m2 > w(A) + 2D (cf. 3.1). By

assumption, w(A) ≈ 4 · 109 and D ≈ 4 · 107 so we may choose m = 63256. To
execute the sorting-based algorithm, each node consists mainly of 3 registers of
⌈
log2(4 · 107)

⌉
= 26 bits each, a 26-bit compare-exchange element (in at least half

of the nodes), and some logic for tracking the current stage of the algorithm.
Input, namely the nonzero elements of A and the initial vector ~v, is loaded
just once so this can be done serially. The mesh computes the vectors Ak~v by
repeated matrix-by-vector multiplication, and following each such multiplication
it calculates the inner product ~u(Ak~v) and outputs this single bit.
In standard CMOS VLSI design, a single-bit register (i.e., a D-type edge-

triggered flip-flop) requires about 8 transistors, which amounts to 624 transistors
per node. To account for the logic and additional overheads such as a clock
distribution network, we shall assume an average of 2000 transistors per node
for a total of 8.0 · 1012 transistors in the mesh.
As a representative of current technology available on large scale we consider

Intel’s latest Pentium processor, the Pentium 4 “Northwood” (0.13µm2 feature
size process). A single Northwood chip (inclusive of its on-board L2 cache) con-
tains 5.5 · 107 transistors, and can be manufactured in dies of size 131mm2 on
wafers of diameter 300mm, i.e., about 530 chips per wafer when disregarding
defects. The 1.6GHz variant is currently sold at $140 in retail channels. By tran-
sistor count, the complete mesh would require about

(
8.0 · 1012

)
/
(
5.5 · 107

)
≈

145 500 Northwood-sized dies or about 273 wafers. Using the above per-chip price
figure naively, the construction cost is about $20M. Alternatively, assuming a
wafer cost of about $5,000 we get a construction cost of roughly $1.4M, and the
initial costs (e.g., mask creation) are under $1M.
The matter of inter-chip communication is problematic. The mesh as a whole

needs very few external lines (serial input, 1-bit output, clock, and power). How-
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ever, a chip consisting of s × s nodes has 4s − 4 nodes on its edges, and each
of these needs two 26-bit bidirectional links with its neighbor on an adjacent
chip, for a total of about 2 · 2 · 26 · 4s = 416s connections. Moreover, such con-
nections typically do not support the full 1GHz clock rate, so to achieve the
necessary bandwidth we will need about 4 times as many connections: 1664s.
While standard wiring technology cannot provide such enormous density, the
following scheme seems plausible. Emerging “flip-chip” technologies allow direct
connections between chips that are placed face-to-face, at a density of 277 con-
nections per mm2 (i.e., 60µs array pitch). We cut each wafer into the shape
of a cross, and arrange the wafers in a two-dimensional grid with the arms of
adjacent wafers in full overlap. The central square of each cross-shaped wafer
contains mesh nodes, and the arms are dedicated to inter-wafer connections.
Simple calculation shows that with the above connection density, if 40% of the
(uncut) wafer area is used for mesh nodes then there is sufficient room left for
the connection pads and associated circuitry. This disregards the issues of de-
lays (mesh edges that cross wafer boundaries are realized by longer wires and
are thus slower than the rest), and of the defects which are bound to occur. To
address these, adaptation of the algorithm is needed. Assuming the algorithmic
issues are surmountable, the inter-wafer communication entails a cost increase
by a factor of about 3, to $4.1M.

According to [1, Section 4], a matrix-by-vector multiplication consists of,
essentially, three sort operations on the m×m mesh. Each sort operation takes
8m steps, where each step consists of a compare-exchange operation between 26-
bit registers of adjacent nodes. Thus, multiplication requires 3 · 8m ≈ 1.52 · 106
steps. Assuming that each step takes a single clock cycle at a 1GHz clock rate,
we get a throughput of 659 multiplications per second.

Basically, Wiedemann’s algorithm requires 3D multiplications. Alas, the use
of blocking factor K = 1 entails some additional costs. First, the number of
multiplications roughly doubles due to the possibility of failure (cf. 2.5). More-
over, the algorithm will yield a single vector from the kernel of A, whereas the
Number Field Sieve requires several linearly independent kernel elements: half
of these yield a trivial congruence (c.f. 2.2), and moreover certain NFS optimiza-
tions necessitate discarding most of the vectors. In RSA-512, a total of about 10
kernel vectors were needed. Fortunately, getting additional vectors is likely to be
cheaper than getting the first one (this is implicit in [18, Algorithm 1]). Overall,
we expect the number of multiplications to be roughly 2 · 10

3 · 3D = 20D. Thus,
the expected total running time is roughly 20 · 4 · 107/659 ≈ 1 210 000 seconds,
or 14 days. The throughput cost is thus 5.10 · 1012 $× sec.
If we increase the blocking factor from 1 to over 32 and handle the multi-

plication chains sequentially on a single mesh, then only 3D multiplications are
needed ([1] considers this but claims that it will not change the cost of compu-
tation; that is true only up to constant factors). In this case the time decreases
to 50 hours, and the throughput cost decreases to 7.4 · 1011 $× sec.
Heat dissipation (i.e., power consumption) may limit the node density and

clock rate of the device, and needs to be analysed. Note however that this limita-
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tion is technological rather than theoretical, since in principle the mesh sorting
algorithm can be efficiently implemented using reversible gates and arbitrarily
low heat dissipation.

5.4 A routing-based circuit. The above analysis refers to the mesh circuit
described in [1], which relies on the novel use of mesh sorting for matrix-by-vector
multiplication. We now present an alternative design, based on mesh routing.
This design performs a single routing operation per multiplication, compared to
three sorting operations (where even a single sorting operation is slower than
routing). The resulting design has a reduced cost, improved fault tolerance and
very simple local control. Moreover, its inherent flexibility allows further im-
provements, as discussed in the next section. The basic design is as follows.
For simplicity assume that each of the D columns of the matrix has weight

exactly h (here h = 100), and that the nonzero elements of A are uniformly
distributed (both assumptions can be easily relaxed). Letm =

√
D · h. We divide

the m×m mesh into D blocks of size
√
h×
√
h. Let Si denote the i-th block in

row-major order (i ∈ {1, . . . , D}), and let ti denote the node in the upper left
corner of Si. We say that ti is the target of the value i. Each node holds two
log2 D-bit values, Q[i] and R[i]. Each target node ti also contains a single-bit
value P [i]. For repeated multiplication of A and ~v, the mesh is initialized as
follows: the i-th entry of ~v is loaded into P [i], and the row indices of the nonzero
elements in column i ∈ {1, . . . , D} of A are stored (in arbitrary order) in the
Q[·] of the nodes in Si. Each multiplication is performed thus:

1. For all i, broadcast the value of P [i] from ti to the rest of the nodes in Si
(this can be accomplished in 2

√
h− 2 steps).

2. For all i and every node j in Si: if P [i] = 1 then R[j]← Q[j], else R[j]← nil
(where nil is some distinguished value outside {1, . . . , D}).

3. P [i]← 0 for all i
4. Invoke a mesh-based packet routing algorithm on the R[·], such that each
non-nil value R[j] is routed to its target node tR[j]. Each time a value i
arrives at its target ti, discard it and flip P [i].

After these steps, P [·] contain the result of the multiplication, and the mesh is
ready for the next multiplication. As before, in the inner product computation
stage of the Wiedemann algorithm, we need only compute ~uAk~v for some vector
~u, so we load the i-th coordinate of ~u into node ti during initialization, and com-
pute the single-bit result ~uAk~v inside the mesh during the next multiplication.
There remains the choice of a routing algorithm. Many candidates exist (see

[7] for a survey). To minimize hardware cost, we restrict our attention to algo-
rithms for the “one packet” model, in which at each step every node holds at
most one packet (and consequentially each node can send at most one packet
and receive at most one packet per step). Note that this rules out most known al-
gorithms, including those for the well-studied “hot-potato” routing model which
provides a register for every edge. Since we do binary multiplication, the rout-
ing problem has the following unusual property: pairwise packet annihilation is
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allowed. That is, pairs of packets with identical values may be “cancelled out”
without affecting the result of the computation. This relaxation can greatly
reduce the congestion caused by multiple packets converging to a common desti-
nation. Indeed this seems to render commonly-cited lower bounds inapplicable,
and we are not aware of any discussion of this variant in the literature. While
known routing and sorting algorithms can be adapted to our task, we suggest a
new routing algorithm that seems optimal, based on our empirical tests.

The algorithm, which we call clockwise transposition routing, has an excep-
tionally simple control structure which consists of repeating 4 steps. Each step
involves compare-exchange operations on pairs of neighboring nodes, such that
the exchange is performed iff it reduces the distance-to-target of the non-nil
value (out of at most 2) that is farthest from its target along the relevant di-
rection. This boils down to comparison of the target row indices (for vertically
adjacent nodes) or target column indices (for horizontally adjacent nodes). For
instance, for horizontally adjacent nodes i, i+1 such that tR[i] resides on column
ci and tR[i+1] resides on column ci+1, an exchange of i and i+ 1 will be done iff
ci > ci+1. To this we add annihilation: if R[i] = R[i+ 1] then both are replaced
by nil.

The first step of clockwise transposition routing consists of compare-exchange
between each node residing on an odd row with the node above it (if any). The
second step consists of compare-exchange between each node residing on an odd
column with the node to its right (if any). The third and fourth steps are similar
to the first and second respectively, except that they involve the neighbors in
the opposite direction. It is easily seen that each node simply performs compare-
exchanges with its four neighbors in either clockwise or counterclockwise order.

We do not yet have a theoretical analysis of this algorithm. However, we
have simulated it on numerous inputs of sizes up to 13 000×13 000 with random
inputs drawn from a distribution mimicking that of the above mesh, as well
as the simple distribution that puts a random value in every node. In all runs
(except for very small meshes), we have not observed even a single case where
the running time exceeded 2m steps. This is just two steps from the trivial lower
bound 2m− 2.
Our algorithm is a generalization of odd-even transposition sort, with a sched-

ule that is identical to the “2D-bubblesort” algorithm of [8] but with different
compare-exchange elements. The change from sorting to routing is indeed quite
beneficial, as [8] shows that 2D-bubblesort is considerably slower than the ob-
served performance of our clockwise transposition routing. The new algorithm
appears to be much faster than the 8m sorting algorithm (due to Schimmler) used
in [1], and its local control is very simple compared to the complicated recursive
algorithms that achieve the 3m-step lower bound on mesh sorting (cf. [16]).

A physical realization of the mesh will contain many local faults (especially
for devices that are wafer-scale or larger, as discussed below). In the routing-
based mesh, we can handle local defects by algorithmic means as follows. Each
node shall contain 4 additional state bits, indicating whether each of its 4 neigh-
bors is “disabled”. These bits are loaded during device initialization, after map-
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ping out the defects. The compare-exchange logic is augmented such that if node
i has a “disabled” neighbor in direction ∆ then i never performs an exchange in
that direction, but always performs the exchange in the two directions orthogo-
nal to ∆. This allows us to “close off” arbitrary rectangular regions of the mesh,
such that values that reach a “closed-off” region from outside are routed along
its perimeter. We add a few spare nodes to the mesh, and manipulate the mesh
inputs such that the spare effectively replace the nodes of the in closed-off re-
gions. We conjecture that the local disturbance caused by a few small closed-off
regions will not have a significant effect on the routing performance.
Going back to the cost evaluation, we see that replacing the sorting-based

mesh with a routing-based mesh reduces time by a factor of 3 · 8/2 = 12. Also,
note that the Q[·] values are used just once per multiplication, and can thus be
stored in slower DRAM cells in the vicinity of the node. DRAM cells are much
smaller than edge-triggered flip-flops, since they require only one transistor and
one capacitor per bit. Moreover, the regular structure of DRAM banks allows for
very dense packing. Using large banks of embedded DRAM (which are shared
by many nodes in their vicinity), the amortized chip area per DRAM bit is
about 0.7µm2. Our Northwood-based estimates lead to 2.38µm2 per transistor,
so we surmise that for our purposes a DRAM bit costs 1/3.4 as much as a logic
transistor, or about 1/27 as much as a flip-flop. For simplicity, we ignore the
circuitry needed to retrieve the values from DRAM — this can be done cheaply
by temporarily wiring chains of adjacent R[·] into shift registers. In terms of
circuit size, we effectively eliminate two of the three large registers per node,
and some associated logic, so the routing-based mesh is about 3 times cheaper
to manufacture. Overall, we gain a reduction of a factor 3 · 12 = 36 in the
throughput cost.

5.5 An improved routing-based circuit. We now tweak the routing-based
circuit design to gain additional cost reductions. Compared to the sorting-based
design (cf. 5.3), these will yield a (constant-factor) improvement by several order
of magnitudes. While asymptotically insignificant, this suggests a very practical
device for the NFS matrix step of 1024-bit moduli. Moreover, it shows that
already for 1024-bit moduli, the cost of parallelization can be negligible compared
to the cost of the RAM needed to store the input, and thus the speed advantage
is gained essentially for free.
The first improvement follows from increasing the density of targets. Let

ρ denote the average number of P [·] registers per node. In the above scheme,
ρ = h−1 ≈ 1/100. The total number of P [·] registers is fixed atD, so if we increase
ρ the number of mesh nodes decreases by hρ. However, we no longer have enough
mesh nodes to route all the hD nonzero entries of A simultaneously. We address
this by partially serializing the routing process, as follows. Instead of storing
one matrix entry Q[·] per node, we store hρ such values per node: for ρ ≥ 1,
each node j is “in charge” of a set of ρ matrix columns Cj = {cj,1, . . . , cj,ρ}, in
the sense that node j contains the registers P [cj,1], . . . , P [cj,ρ], and the nonzero
elements of A in columns cj,1, . . . , cj,ρ. To carry out a multiplication we perform
hρ iterations, where each iteration consists of retrieving the next such nonzero
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element (or skipping it, depending on the result of the previous multiplication)
and then performing clockwise transposition routing as before.
The second improvement follows from using block Wiedemann with a block-

ing factor K > 1 (cf. 2.5). Besides reducing the number of multiplications by a
factor of roughly 20

3 (cf. 5.3), this produces an opportunity for reducing the cost
of multiplication, as follows. Recall that in block Wiedemann, we need to perform
K multiplication chains of the form Ak~vi, for i = 1, . . . ,K and k = 1, . . . , 2D/K,
and later again, for k = 1, . . . , D/K. The idea is to perform several chains in
parallel on a single mesh, reusing most resources (in particular, the storage taken
by A). For simplicity, we will consider handling all K chains on one mesh. In the
routing-based circuits described so far, each node emitted at most one message
per routing operation — a matrix row index, which implies the address of the
target cell. The information content of this message (or its absence) is a single
bit. Consider attaching K bits of information to this message: log2(D) bits for
the row index, and K bits of “payload”, one bit per multiplication chain.
Combining the two generalizations gives the following algorithm, for 0 < ρ ≤

1 and integer K ≥ 1. The case 0 < ρ < 1 requires distributing the entries of each
matrix column among several mesh nodes, as in 5.4, but its cost is similar.
Let {Cj}j∈{1,...,D/ρ} be a partition of {1, . . . , D}, Cj = {c : (j−1)ρ ≤ c−1 <

jρ}. Each node j ∈ {1, . . . , D/ρ} contains single-bit registers Pi[c] and P ′i [c] for
all i = 1, . . . ,K and c ∈ Cj , and a register Rj of size log2(D) +K. Node j also
contains a list Qj = {(r, c) | Ar,c = 1, c ∈ Cj} of the nonzero matrix entries in
the columns Cj of A, and an index Ij into Cj . Initially, load the vectors ~vi into
the Pi[·] registers. Each multiplication is then performed thus:
1. For all i and c, P ′i [c]← 0. For all j, Ij ← 1.
2. Repeat hρ times:
(a) For all j: (r, c)← Qj [Ij ], Ij ← Ij + 1, R[j]←

〈
r, P1[c], . . . , PK [c]

〉
.

(b) Invoke the clockwise transposition routing algorithm on the R[·], such
that each value R[j] = 〈r, . . .〉 is routed to the node tj for which r ∈ Cj .
During routing, whenever a node j receives a message 〈r, p1, . . . , pK〉
such that r ∈ Cj , it sets P ′i [r] ← P ′i [r] ⊕ pi for i = 1, . . . ,K and
discards the message. Moreover, whenever packets 〈r, p1, . . . , pK〉 and
〈r, p′1, . . . , p′K〉 in adjacent nodes are compared, they are combined: one
is annihilated and the other is replaced by 〈r, p1 ⊕ p′1, . . . , pK ⊕ p′K〉.

3. Pi[c]← P ′i [c] for all i and c.

After these steps, Pi[·] contain the bits of Ak~vi and the mesh is ready for the
next multiplication. We need to compute and output the inner products ~uj(A

k~vi)
for some vectors ~u1, . . . , ~uK , and this computation should be completed before
the next multiplication is done. In general, this seems to require Θ(K2) addi-
tional wires between neighboring mesh nodes and additional registers. However,
usually the ~uj are chosen to have weight 1 or 2, so the cost of computing these
inner products can be kept very low. Also, note that the number of routed mes-
sages is now doubled, because previously only half the nodes sent non-nil mes-
sages. However, empirically it appears that the clockwise transposition routing
algorithm handles the full load without any slowdown.
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It remains to determine the optimal values of K and ρ. This involves imple-
mentation details and technological quirks, and obtaining precise figures appears
rather hard. We thus derive expressions for the various cost measures, based on
parameters which can characterize a wide range of implementations. We then
substitute values that reasonably represent today’s technology, and optimize for
these. The parameters are as follows:

– Let At, Af and Ad be the average wafer area occupied by a logic transis-
tor, an edge-triggered flip-flop and a DRAM bit, respectively (including the
related wires).

– Let Aw be the area of a wafer.
– Let Ap be the wafer area occupied by an inter-wafer connection pad (cf. 5.3).
– Let Cw be the construction cost of a single wafer (in large quantities).
– Let Cd be the cost of a DRAM bit that is stored off the wafers (this is relevant
only to the FPGA design of Appendix A).

– Let Td be the reciprocal of the memory DRAM access bandwidth of a single
wafer (relevant only to FPGA).

– Let Tl be the time it takes for signals to propagate through a length of
circuitry (averaged over logic, wires, etc.).

– Let Tp be the time it takes to transmit one bit through a wafer I/O pad.

We consider three implementation approaches: custom-produced “logic” wafers
(as used in 5.3, with which we maintain consistency), custom-produced “DRAM”
wafers (which reduce the size of DRAM cells at the expense of size and speed
of logic transistors) and an FPGA-based design using off-the-shelf parts (cf. Ap-
pendix A). Rough estimates of the respective parameters are given in Table 2.

Table 2. Implementation hardware parameters

Custom1 (“logic”) Custom2 (“DRAM”) FPGA

At 2.38 µm2 2.80 µm2 0.05

Af 19.00 µm2 22.40 µm2 1.00

Ad 0.70 µm2 0.20 µm2 ∅

Ap 4 000 µm2 × sec 4 000 µm2 × sec ∅

Aw 6.36 · 1010 µm2 6.36 · 1010 µm2 25 660
Cw $5,000 $5,000 $150

Cd ∅ ∅ $4 · 10−8

Td ∅ ∅ 1.1 · 10−11 sec

Tp 4 · 10−9 sec 4 · 10−9 sec 2.5 · 10−9 sec

Tl 1.46 · 10−11 sec/µm 1.80 · 10−11 sec/µm 1.43 · 10−9 sec

∅ marks values that are inapplicable, and taken to be zero.

The cost of the matrix step is derived with some additional approximations:

– The number of mesh nodes is D/ρ.
– The values in Qj [·] (i.e., the nonzero entries of A) can be stored in DRAM
banks in the vicinity of the nodes, where (with an efficient representation)
they occupy hρ log2(D)Ad per node.
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– The Pi[c] registers can be moved to DRAM banks, where they occupy ρKAd

per node.
– The P ′j [c] registers can also be moved to DRAM. However, to update the
DRAM when a message is received we need additional storage. Throughout
theD/ρ steps of a routing operation, each node gets 1 message on average (or
less, due to annihilation). Thus log2(ρ)+K latch bits per node would suffice
(if they are still in use when another message arrives, it can be forwarded to
another node and handled when it arrives again). This occupies ρKAf per
node when ρ < 2, and ρKAd + 2(log2(ρ) +K)Af per node when ρ ≥ 2.

– The bitwise logic related to the Pi[c] registers, the P
′
i [c] and the last K bits

of the R[j] registers together occupy 20 ·min(ρ, 2)KAt per node.
– The R[j] registers occupy (log2(D) +K)Af per node
– The rest of the mesh circuitry (clock distribution, DRAM access, clockwise
transposition routing, I/O handling, inner products, etc.) occupies (200 +
30 log2(D))At per node.

– Let An be total area of a mesh node, obtained by summing the above (we
get different formulas for ρ < 2 vs. ρ ≥ 2).

– Let Am = AnD/ρ be the total area of the mesh nodes (excluding inter-wafer
connections).

– Let Nw be the number of wafers required to implement the matrix step,
and let Np be the number of inter-wafer connection pads per wafer. For
single-wafer designs, Nw = 1/bAw/Amc and Np = 0. For multiple-wafer de-
signs, these values are derived from equations for wafer area and bandwidth:
NwAw = Am+NwNpAp, Np = 4 ·2 ·

√

D/(ρNw) ·(log2D+K) ·Tp/(
√AnTl).

– Let Nd be total number of DRAM bits (obtained by evaluating Am for
Af = At = 0,Ad = 1).

– Let Na be the number of DRAM bit accesses (reads+writes) performed
throughout the matrix step. We get: Na = 3D(2hDK +Dh log2(D)), where
the first term due to the the P ′i [c] updates and the second term accounts for
reading the matrix entries.

– Let Cs = NwCw +NdCd be the total construction cost for the matrix step.
– The full block Wiedemann algorithm consists of 3D/K matrix-by-vector
multiplications, each of which consists of hρ routing operations, each of which
consists of 2

√

D/ρ clocks. Each clock cycle takes Tl
√
An.

Let Ts be the time taken by the full block Wiedemann algorithm. We get:
Ts = 6D3/2hTl

√
ρAn/K +NaTd/Nw.

Table 3 lists the cost of the improved routing-based circuit for several choices
of ρ and K, according to the above. It also lists the cost of the sorting-based
circuits (cf. 5.3) and the PC implementation of Appendix B. The lines marked
by “(opt)” give the parameter choice that minimize the throughput cost for each
type of hardware.
The second line describes a routing-based design whose throughput cost is

roughly 45 000 times lower than that of the original sorting-based circuit (or 6 700
times lower than sorting with K À 1). Notably, this is a single-wafer device,
which completely solves the technological problem of connecting multiple wafers
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with millions of parallel wires, as necessary in the original design of [1]. The third
line shows that significant parallelism can be gained essentially for free: here, 88%
of the wafer area is occupied simply by the DRAM banks needed to store the
input matrix, so further reduction in construction cost seems impossible.

Table 3. Cost of the matrix step for the “small” matrix

Algorithm Impleme- ρ K Wafers/ Construction Run time Throughput
ntation chips/ cost cost

PCs Cs Ts (sec) CsTs ($× sec)

Routing Custom1 0.51 107 19 $94,600 1440 (24 min) 1.36·108 (opt)

Routing Custom2 42.10 208 1 $5,000 21 900 (6.1 hours) 1.10·108 (opt)

Routing Custom2 216.16 42 0.37 $2,500 341 000 (4 days) 8.53·108

Routing Custom1 0.11 532 288 $1,440,000 180 (3 min) 2.60·108

Routing FPGA 5473.24 25 64 $13,800 15 900 000 (184 days) 2.20·1011(opt)

Routing FPGA 243.35 60 2500 $380,000 1 420 000 (17 days) 5.40·1011

Sorting Custom1 1 273 $4,100,000 1 210 000 (14 days) 4.96·1012

Sorting Custom1 À 1 273 $4,100,000 182 000 (50 hours) 7.44·1011

Serial PCs 32 1 $4,460 125 000 000 (4 years) 5.59·1011

Tree PCs 32 66 $24,000 2 290 000 (27 days) 5.52·1010

5.6 An improved circuit for the “large” matrix. The large matrix result-
ing from ordinary relation collection contains 250 times more columns:D ≈ 1010.
We assume that the average column density remains h = 100. It is no longer
possible to fit the device on a single wafer, so the feasibility of the mesh de-
sign now depends critically on the ability to make high bandwidth inter-wafer
connections (cf. 5.3).
Using the formulas given in the previous section, we obtain the costs in Ta-

ble 4 for the custom and FPGA implementations, for various parameter choices.
The third line shows that here too, significant parallelism can be attained at
very little cost (88% of the wafer area is occupied by DRAM storing the input).
As can be seen, the improved mesh is quite feasible also for the large matrix,
and its cost is a small fraction of the cost of the alternatives, and of relation
collection.

Table 4. Cost of the matrix step for the “large” matrix

Algorithm Impleme- ρ K Wafers/ Construction Run time Throughput
ntation chips/ cost cost

PCs Cs Ts (sec) CsTs ($× sec)

Routing Custom1 0.51 136 6 030 $30.1M 5.04 · 106 (58 days) 1.52·1014(opt)

Routing Custom2 4112 306 391 $2.0M 6.87 · 107 (2.2 years) 1.34·1014(opt)

Routing Custom2 261.60 52 120 $0.6M 1.49 · 109 (47 years) 8.95·1014

Routing Custom1 0.11 663 9000 $500.0M 6.40 · 105 (7.4 days) 2.88·1014

Routing FPGA 17 757.70 99 13 567 $3.5M 3.44 · 1010 (1088 years) 1.19·1017(opt)

Routing FPGA 144 .41 471 6.6 · 106 $1000.0M 1.14 · 109 (36 years) 1.13·1018

Serial PCs 32 1 $1.3M 270 000 years 1.16·1019

Tree PCs 3484 813 $153.0M 3.17 · 108 (10 years) 4.84·1016
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5.7 Summary of hardware findings. The improved design of 5.5 and 5.6,
when implemented using custom hardware, appears feasible for both matrix
sizes. Moreover, it is very attractive when compared to the traditional serial
implementations (though appropriate parallelization techniques partially close
this gap; see Appendix B). However, these conclusions are based on numerous
assumptions, some quite optimistic. Much more research, and possibly actual
relation collection experiments, would have to be carried out to get a clearer
grasp of the actual cost (time and money) of both the relation collection and
matrix steps for 1024-bit moduli.
In light of the above, one may try to improve the overall performance of

NFS by re-balancing the relation collection step and the matrix step, i.e., by
increasing the smoothness bounds (the opposite of the approach sketched in
Remark 3.7). For ordinary NFS, asymptotically this is impossible since the pa-
rameters used for ordinary relation collection (i.e., the “large” matrix) already
minimize the cost of relation collection (cf. 2.6). For improved NFS that is ap-
plied to a single factorization (cf. 2.7), if we disregard the cost of the matrix step
and optimize just for relation collection then we can expect a cost reduction of
about L21024 [1/3, 1.9018836 · · · ]/L21024 [1/3, 1.8689328 · · · ] ≈ 2.8.
If many integers in a large range must be factored — a reasonable assumption

given our interpretation of the throughput cost (cf. 3.2) — a much faster method
exists (cf. [4]). It remains to be studied whether these asymptotic properties
indeed hold for 1024-bit moduli and what are the practical implications of the
methods from [4].

6 Conclusion

We conclude that methods to evaluate the security of RSA moduli that are based
on the traditional operation count are not affected by the circuits proposed in [1].
Although the traditional estimates underestimate the difficulty of factoring, [1]
provides yet another reason — other than the mostly historical reasons used so
far — not to rely too much on supposedly more accurate cost-based estimates
for the NFS.
We have shown that the suggestion made in [1] that the number of digits

of factorable numbers has grown by a factor of 3, is based on an argument
that may not be to everyone’s taste. An alternative interpretation leads to a
factor 1.17, under the cost function defined in [1]. The most traditional cost
function, however, even leads to a factor 0.92.
Finally, we have presented an improved design for a mesh-based implemen-

tation of the linear algebra stage of the NFS. For an optimistically estimated
1024-bit factorization, our analysis suggests that a linear dependency between
the columns of the sparse matrix can be found within a few hours by a device
that costs about $5,000. At the very least, this is an additional argument not to
rely on the alleged difficulty of the matrix step when evaluating the difficulty of
factoring. As mentioned in [1] there are many other possibilities to be explored.
Further study — and unbiased interpretation of the results — should eventu-
ally enable the cryptographic research and users communities to assess the true
impact of [1] and the method proposed in 5.5.
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A Using off-the-shelf hardware for the circuit approach

In subsections 5.3–5.5 we were concerned primarily with custom-produced hard-
ware, in accordance with the focus on throughput cost. In practice, however, we
are often concerned about solving a small number of factorization problems. In
this case, it may be preferable to use off-the-shelf components (especially if they
can be dismantled and reused, or if discreteness is desired).
Tables 2–4 in Section 5.5 contain the parameters and cost estimates for off-

the-shelf hardware, using the following scheme. FPGA chips are connected in a
two-dimensional grid, where each chip holds a block of mesh nodes. The FPGA
we consider is the Altera Stratix EP1S25F1020C7, which is expected to cost
about $150 in large quantities in mid-2003. It contains 2Mbit of DRAM and
25 660 “logic elements” that consist each of a single-bit register and some con-
figurable logic. Since on-chip DRAM is scant, we connect each FPGA to several
DRAM chips. The FPGA has 706 I/O pins that can provide about 70Gbit/sec
of bandwidth to the DRAM chips (we can fully utilize this bandwidth by “swap-
ping” large continuous chunks into the on-FPGA DRAM; the algorithm allows
efficient scheduling). These I/O pins can also be used for communicating with
neighbouring FPGAs at an aggregate bandwidth of 280Gbit/sec.
The parameters given in Table 2 are normalized, such that one LE is consid-

ered to occupy 1 area unit, and thus Af = 1. We make the crude assumption
that each LE provides the equivalent of 20 logic transistors in our custom de-
sign, so At = 0.05. Every FPGA chip is considered a “wafer” for the purpose of
calculation, so Aw = 51 840. Since DRAM is located outside the FGPA chips,
Ad = 0 but Cd = 4 · 108, assuming $320 per gigabyte of DRAM. Td and Tp are
set according to available bandwidth. For Tl we assume that on average an LE
switches at 700MHz. Ap = 0, but we need to verify that the derived Np is at
most 706 (fortunately this holds for all our parameter choices).
As can be seen from the tables, the FPGA-based devices are significantly

less efficient than both the custom designs and properly parallelized PC-based
implementation. Thus they appear unattractive.

B The traditional approach to the matrix step

We give a rough estimate of the price and performance of a traditional imple-
mentation of the matrix step using the block Lanczos method [13] running on
standard PC hardware. Let the “small” and “large” matrices be as in 5.1.

B.1 Processing the “small” matrix using PCs. A bare-bones PC with a
2GHz Pentium 4 CPU can be bought for $300, plus $320 per gigabyte of RAM.
We will use block Lanczos with a blocking factor of 32, to match the processor
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word size. The hD = 4 · 109 nonzero entries of the “small” matrix require 13GB
of storage, and the auxiliary D-dimensional vectors require under 1GB. The
construction cost is thus about $4,500.
The bandwidth of the fastest PC memory is 4.2GB/sec. In each matrix-by-

vector multiplication, all the nonzero matrix entries are read, and each of these
causes an update (read and write) of a 32-bit word. Thus, a full multiplication
consists of accessing hD log2(D) + 2hD · 32 = 4.8 · 1010 bits, which takes about
11 seconds. The effect of the memory latency on non-sequential access, typically
40n, raises this to about 50 seconds (some reduction may be possible by op-
timizing the memory access pattern to the specific DRAM modules used, but
this appears nontrivial). Since 2D/32 matrix-by-vector multiplications have to
be carried out [13], we arrive at a total of 1.25 · 108 seconds (disregarding the
cheaper inner products), i.e., about 4 years.
The throughput cost is 5.6 ·1011, which is somewhat better than the sorting-

based mesh design (despite the asymptotic advantage of the latter), but over
5000 times worse than the the single-wafer improved mesh design (cf. 5.5). Par-
allelization can be achieved by increasing the blocking factor of the Lanczos
algorithm — this would allow for different tradeoffs between construction cost
and running time, but would not decrease the throughput cost.

B.2 Processing the “large” matrix using PCs. The large matrix contains
250 times more columns at the same (assumed) average density. Thus, it requires
250 times more memory and 2502 = 62 500 times more time than the small
matrix. Moreover, all row indices now occupy dlog2 109e = 34 bits instead of
just 24. The cost of memory needed to store the matrix is $1.36M (we ignore the
lack of support for this amount of memory in existing memory controllers), and
the running time is 270 000 years. This appears quite impractical (we cannot
increase the blocking factor by over

√
D, and even if we could, the construction

cost would be billions of dollars).

Remark B.3 Once attention is drawn to the cost of memory, it becomes
evident that better schemes are available for parallelizing a PC-based imple-
mentation. One simple scheme involves distributing the matrix columns among
numerous PCs such that each node j is in charge of some set of columns
Cj ⊂ {1, . . . , D}, and contains only these matrix entries (rather than the whole
matrix). The nodes are networked together with a binary tree topology. Let ~ai
denote the i-th column of A. Each matrix-by-vector multiplication A~w consists
of the root node broadcasting the bits w1, . . . , wD down the tree, each node j
computing a partial sum vector ~rj =

∑

i∈Cj ,wi=1 ~ai (mod 2), and finally per-

forming a converge-cast operation to produce the sum
∑

j ~rj = A~w (mod 2) at
the root. If the broadcast and converge-cast are done in a pipelined manner on
0.5 gigabit links, this is easily seen to reduce the throughput cost to roughly
5.6 · 1010 for the small matrix and 4.8 · 1016 for the large matrix (see Tables 3,4).
For constant-bandwidth links, this scheme is asymptotically inefficient since

its throughput cost is L(3β). However, for the parameters considered it is out-
performed only by the custom-built improved mesh.


