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Abstract. A Key Distribution Center enables secure communications
among groups of users in a network by providing common keys that can
be used with a symmetric encryption algorithm to encrypt and decrypt
messages the users wish to send to each other. A Distributed Key Dis-
tribution Center is a set of servers of a network that jointly realize a
Key Distribution Center. In this paper we propose an unconditionally
secure scheme to set up a robust Distributed Key Distribution Center.
Such a distributed center keeps working even if some minority of the
servers malfunction or misbehave under the control of a mobile adver-
sary. Our scheme for a distributed key distribution center is constructed
using unconditionally secure proactive verifiable secret sharing schemes.
We review the unconditionally secure verifiable secret sharing scheme
described by Stinson and Wei, discuss a problem with the proactive ver-
sion of that scheme, and present a modified version which is proactively
secure.

1 Introduction

A group of users of a network, referred to as a “conference”, in order to securely
communicate over public channels, could decide to use symmetric encryption
algorithms, e.g., RC6 or AES. These algorithms are fast and presumed to be
secure. But to apply this strategy, they need a common key with which to encrypt
and to decrypt the messages they wish to send to each other. This basic problem
is well-known in the literature and it is called the Key Establishment Problem.
A common solution to the Key Establishment Problem is to use a Key Dis-

tribution Center (KDC, for short), in which a server is responsible for the dis-
tribution and management of the secret keys. The idea is the following: Each
user shares a common key with the center. When he wants to securely commu-
nicate with a subset of other users, he sends a request for a conference key. The
center checks for membership of the user in that conference, and generates and
distributes the conference key in encrypted form to each member of the group.
Needham and Schroeder [13] initiated this approach, implemented most notably
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in the Kerberos System [14]. Kerberos was formally defined and studied in [1],
where it is referred to as the three-party model.

The scheme implemented by the Key Distribution Center is called a Key
Distribution Scheme (KDS, for short). The scheme is said to be unconditionally
secure if it is secure independent of the computational resources of the adversary.
Several kinds of Key Distribution Schemes have been considered in the literature:
Key Pre-Distribution Schemes (KPS, for short), Key Agreement Schemes (KAS,
for short) and Broadcast Encryption Schemes (BES, for short) among others.
The reader can consult [20] for a survey on unconditionally secure schemes, [19,
11] for a general and detailed description of a variety of protocols for the Key
Establishment Problem and related issues, and [3] for a simple introduction.

Our attention in this paper focuses on a model which remedies some potential
weaknesses introduced by using a single KDC. Indeed, the main drawback of a
single KDC is that it must be trusted. Potentially, it could eavesdrop on all the
communications. Moreover, the center can be a “bottleneck” for the performance
of the network and, if it crashes, secure communication cannot be supported
anymore. Last but not least, even if the KDC is honest and everything works
fine, the KDC still represents an attractive target to the adversary because the
overall system security is lost if the KDC is compromised.

In order to solve the above problems, a new approach to key distribution was
introduced in [12]. A Distributed Key Distribution Center (DKDC, for short) is a
set of n servers of a network that jointly realize the function of a Key Distribution
Center. A user who needs to participate in a conference sends a key-request to
a subset of his own choosing of the n servers, and the contacted servers answer
with some information enabling the user to compute the conference key. In such a
model, a single server by itself does not know the secret keys, since they are shared
between the n servers. Moreover, if some server crashes, secure communication
can still be supported by the other servers and, since each user can contact
a different subset of servers, the slow-down factor for the performance of the
applications introduced by a single KDC can be improved.

In subsequent papers [6, 2, 4], the notion of DKDC has been studied from
an information theoretic point of view. Therein, the authors showed that the
protocol proposed in [12], based on bivariate polynomials, is optimal with respect
to the amount of information needed to set up and manage the system.

In this paper we show how to set up a Robust DKDC. Namely, we describe
a protocol where each server can verify that the information it stores and uses
to answer the user’s key-request messages is consistent with the information
stored by the other servers; at the same time, the users are guaranteed that
they can compute the same key for a given conference in which they belong
to. Moreover, time is divided in periods, and at the beginning of each period
the servers are involved in an update procedure that “refreshes” the private
information they store while the conference keys they provide stay the same.
This property is referred to as proactive security. Notice that, in [12], a simple
solution was outlined, which could have been applied to the basic polynomial
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construction they proposed in order to achieve the above properties. However,
as we show here, that solution does not work.
The design of our DKDC is based on unconditionally secure proactive ver-

ifiable secret sharing. In Section 5 we show that some existing schemes [21, 15]
contain flaws. Then, we describe two techniques to modify these schemes in order
to realize the proactive security property. We point out that the same ideas can
be used to provide the proactive security property even to the verifiable secret
sharing schemes given in [8].

2 The Model

Let U = {U1, . . . , Um} be a set of m users and let S = {S1, . . . , Sn} be a set
of n servers. Each user has secure channels connecting him or her to all the
servers. Each pair of servers is connected by a secure channel and all of them
share a broadcast channel and a global clock (i.e., the system is synchronous).
Servers can be good (i.e., they honestly execute the protocol) or bad (i.e., they
are controlled by an adversary and can deviate from the protocol in arbitrary
ways) but a majority of good servers is always present across the system. Let C
be the set of conferences, i.e., the set of groups of users which want to securely
communicate, and let G be the set of tolerated coalitions, i.e., the set of coalitions
of users who can try to break the scheme in some way. For example, C could be
the set of all subsets of users of size p while G could be the set of all subsets
of users of size q. A verifiable distributed key distribution scheme is divided in
three phases: an initialization phase, which involves only the servers; a key-
request phase, in which users ask servers for keys; and a key-computation phase,
in which users construct keys from the messages they received from the servers
who were contacted during the key-request phase.

Initialization phase. We assume that the initialization phase is performed by a
joint computation of all the servers. Each of them, using a private source of ran-
domness, ri, generates some messages that it securely sends to the others. More
precisely, for i = 1, . . . , n, Si sends to Sj some message γi,j , for each j = 1, . . . , n.
At the end of the distribution phase, for i = 1, . . . , n, each server Si verifies the
information received, sends messages along the broadcast channel and, eventu-
ally, computes and stores some secret information ai = f(γ1,i, . . . , γn,i), where
f is a publicly known function. Moreover, each server constructs a list L of the
good servers present across the network at the end of this phase (the lists held
by the good servers will all contain the same identifiers).

Key-request phase. Let Ch ∈ C be a conference. Each user Uj in Ch contacts
a subset of a certain size of good servers belonging to L, requesting a key for
the conference Ch. We denote this key by κh. Each good server Si, contacted
by user Uj , checks

3 for membership of Uj in Ch; if Uj ∈ Ch, then Si computes

3 We do not consider the underlying authentication mechanism involved in a key
request phase.
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a value yh
i,j = F (ai, j, h), where F is a publicly known function. Otherwise, Si

sets yh
i,j =⊥ (a special value which conveys no information about κh). Finally,

Si sends the value y
h
i,j to Uj . Note that a bad server can either refuse to reply

or it may send some incorrect value.

Key-computation phase. Having received the values from the servers, each user
Uj in Ch computes κh from a certain majority of the values received.

Roughly speaking, a Verifiable DKDC must satisfy the following properties:

- Correct and Verifiable Initialization Phase. When the initialization
phase successfully terminates, any good server Si must be able to identify
the subset of good servers and to compute his private information ai.

- Consistent Key Computation. Each user in a conference Ch ⊆ U must
be able to compute the same conference key, after interacting with a subset
of good servers of a certain size.

- Conference Key Security. A conference key must be secure against at-
tacks performed by coalitions of bad servers, coalitions of users, and hybrid
coalitions of a certain size consisting of servers and users.

Let b be an upper bound on the number of bad servers during any phase of
the protocol, and let t > b denote a sufficient number of parties to reconstruct a
possible conference key. In a more precise way, we state the following definition:

Definition 1. Let b, t and n be integers such that n ≥ t and t > b. Let U =
{U1, . . . , Um} be a set of m users, and let S = {S1, . . . , Sn} be a set of n servers.
Finally, let C ⊆ 2U be the set of conferences and let G ⊆ 2U be the set of tol-
erated coalitions. A verifiable (b, t, n, C,G)-Distributed Key Distribution Scheme
(for short, (b, t, n, C,G)-VDKDS) is a three-phase protocol consisting of an Ini-
tialization Phase, a Key Request Phase, and a Key Computation Phase, which
enables each user in Ch ∈ C to compute a common key κh by interacting with
at least n− b servers of the network. More precisely, the following properties are
satisfied:

1. After the initialization phase, each good server computes his private infor-
mation and verifies its consistency with the information received and stored
by the other good servers. At least n − b servers successfully complete this
phase and each of them construct the same (public) list L containing the
identities of the good servers.

2. Each user in Ch ∈ C can compute the common key κh by contacting the
servers in L. At least |L| − b > t of the |L| servers give good answers, from
which the user reconstructs the key. Any t good answers are sufficient to
reconstruct the key.

3. Each conference key is completely secure against coalitions of users G ∈ G;
coalitions of servers of size less than b; and joint coalitions of at most b
servers and users in a subset G ∈ G.
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Basically, in the above model, we assume that at most b servers can misbehave
during the initialization phase of the system, and during the key request phase.
Moreover, these two subsets of bad servers can be different: in other words, we
assume that the adversary is mobile. Notice that a crash of some of the servers
in the above model can be seen as a simple type of misbehavior.

3 A Verifiable Secret Sharing Scheme

The main component of our (b, t, n, C,G)-VDKDS is a Verifiable Secret Sharing
Scheme (VSS, for short). Loosely speaking, in a VSS Scheme, a Dealer shares a
secret among a set of participants in such a way that each participant can verify
if the shares he gets, from the dealer during the distribution phase and from the
other participants during the recovering phase, are consistent with the secret.
VSS schemes were introduced in [5].

In this section we describe the VSS we are going to use. It is a slightly
modified version of the scheme proposed by Stinson and Wei in [21], whose round
complexity has been improved by applying the technique recently described in
[8]. Due to the use of a symmetric polynomial, the scheme of [21], enhanced
with the ideas of [8], is a bit more efficient than the scheme described in [8]
with the same parameters (i.e., when b < n

4 ). Notice that, in the following
construction, the dealer, after sending messages during the initialization phase,
becomes inactive. In fact, as we will argue later, he can be completely substituted
by a joint computation performed by the servers of the system.

First of all, we recall the definition of a VSS.

Definition 2. Let D be a dealer and let P1, . . . , Pn be n participants connected
by secure channels and having access to a broadcast channel. Moreover, let A be
an adversary that can corrupt up to b of the participants (including the dealer).
Assume that π is a protocol consisting of two phases, Share and Reconstruct,
and let S be a set of possible secret values. At the beginning of Share, the dealer
inputs a secret s ∈ S. At the end of Share each participant Pi outputs a boolean
value veri. At the end of Reconstruct each participant outputs a value in S.
The protocol π is an (n, t, b, S) Unconditionally Secure Verifiable Secret Sharing
Scheme if the following properties are satisfied:

1. If a good player Pi outputs veri = 0 at the end of Share, then every good
player outputs veri = 0.

2. If the dealer is good, then veri = 1 for every good Pi.
3. If at least n − b players Pi output veri = 1 at the end of Share, then there
exists an s′ ∈ S such that the event that all good Pi output s

′ at the end of
Reconstruct is fixed at the end of Share and s′ = s if the dealer is good.

4. If |S| = q, s is chosen randomly from S and the dealer is good, then any
coalition of at most t− 1 participants cannot guess, at the end of Share, the
value s with probability greater than 1

q
.
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The scheme we are going to use works as follows: let t, b be two integers such
that n ≥ t+3b and t > b. Let S = GF (q) be a finite field and let ω be a primitive
element in GF (q). All computations are done in the field GF (q).

Share.

– When D wants to share a secret value s ∈ S, he chooses a random sym-
metric polynomial

f(x, y) =

t−1
∑

i=0

t−1
∑

j=0

aijx
iyj ,

where a00 = s and aij = aji for all i, j. Then, for each k, D sends hk(x) =
f(x, ωk) to Pk through a secure channel. At the same time, for each i, Pi

generates and sends to every Pk a random value rik ∈ GF (q) through a
secure channel.

– After receiving hk(x) from D and r1k, . . . , rnk from the other participants,
each Pk broadcasts the value hk(ω

`) + rk` + r`k, for each ` 6= k.
– Each Pi computes the maximum subset G ⊆ {1, . . . , n} such that any

ordered pair (`, k) ∈ G×G is consistent, i.e. such that hk(ω
`)+rk`+r`k =

h`(ω
k)+ r`k + rk`. If |G| ≥ n− b, then Pi outputs veri = 1. Otherwise, Pi

outputs veri = 0.

Reconstruct

– Each Pi sends hi(0) to each Pk, where i ∈ G, the set of good participants
after Share.

– After receiving the hi(0)’s, Pk computes a polynomial fk(0, y) such that
fk(0, ω

i) = hi(0) for at least n − 2b of the data he has received. This
operation can be done efficiently, for example, either using the methods
described in [18], or using error correction techniques for Reed-Solomon
Codes [10].

– Pk computes and outputs s′ = fk(0, 0).

The security of the protocol can be shown along the same line of Theorem 2
in [21]. Our only change in the protocol is to Share where, instead of using the
secure channels for the check of consistency of the shares the dealer D distributes,
we use random one-time pads and the broadcast channel as in [8]. With this trick
we save one round of communication, compared to [21].

4 A Verifiable Distributed Key Distribution Scheme

Using the VSS described in the previous section, we describe a simplified version
of a Verifiable DKDS. We assume that a Dealer D initializes the system but, as
we will show later, this assumption can be easily removed. Our scheme provides
`-wise independent conference keys, i.e., the `-th conference key is uniformly
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distributed over the set of possible values, even if an adversary already knows
`− 1 previous conference keys. It works as follows:

Set up Phase.

– Let `G be the maximum number of conference keys that a group G can
compute. Assume that ` > maxG∈G`G. The dealer chooses a random

polynomial K(x) =
∑`−1

z=0
kzx

z. The conference key for Cs is defined by
κs = K(s).

– Then, for each coefficient kz of K(x) the dealer runs ` independent copies
Σz of the VSS described before, where the secret that Σz distributes
among the servers is kz.

– Each server Si stores the ` univariate polynomials hk0

i (x), . . . , h
k`−1

i (x)
sent by the dealer during the executions of the Share Phase of the Σz’s,
and publishes the list of good servers he has found.

In a VSS, the reconstruction of the secret is done by the participants (i.e.,
the servers in our setting) while in a DKDS each user of a given conference
contacts the servers, receives some information and computes the common key
by applying a public function to the values received. A straightforward “solution”
to this different scenario could be that each server Si sends, according to the VSS

scheme, the values of his polynomials evaluated in zero, i.e., hk0

i (0), . . . , h
k`−1

i (0),
to the users. But this is insecure, because, in this case, the user reconstructs all
the keys! Thus, we need a different approach. Basically, the values sent by the
servers must enable them to compute a single key, namely, the one the user is
asking for.

Key Request and Key Computation Phases.

– User Uj ∈ Cs asks a subset of good servers of size at least n − b for the
key κs.

– Each server Si computes

hi(0) = hk0

i (0) + hk1

i (0)s+ · · ·+ h
k`−1

i (0)s`−1,

and sends hi(0) to the user.
– The user interpolates a polynomial h(x) such that h(ωi) = hi(0) for at

least n− 2b of the values received. Then, he recovers κs = h(0).

Correctness. The correctness of the construction can be shown as follows: ac-
cording to the VSS scheme described in the previous section, each coefficient
of K(x) can be recovered by applying the Lagrange formula. More precisely,
assuming that the first t servers are good servers, we have

kj =

t
∑

i=1

h
kj

i (0)bi, where bi =
∏

k 6=i

ωk

ωk − ωi
.
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Notice that,

K(s) = k0 + k1s+ · · ·+ k`−1s
`−1

=

t
∑

i=1

hk0

i (0)bi + (

t
∑

i=1

hk1

i (0)bi)s+ · · ·+ (

t
∑

i=1

h
k`−1

i (0)bi)s
`−1

=
t

∑

i=1

(hk0

i (0) + hk1

i (0)s+ · · ·+ h
k`−1

i (0)s`−1)bi =
t

∑

i=1

hi(0)bi = h(0) = κs.

In general, since the user does not know a priori which servers send correct
values, he needs to interpolate a polynomial h(x) which agrees with at least
n − 2b of the values received, which can be done efficiently by applying the
techniques given in [18] or in [10], exactly as in the VSS. Finally, he recovers the
common key by evaluating h(x) at x = 0.

A One-Time Scheme (Toy Example). In order to give to the reader a concrete
idea of the protocol, let us consider the following example: let q = 7, ω = 3,
n = 5, t = 2 and b = 1. The dealer defines the keys as points belonging to
K(x) = 3 + 5x(mod7) and, to share the coefficients 3 and 5, he chooses two
symmetric bivariate polynomials, say

f1(x, y) = 3 + 5x+ 5y + 3xy and f 2(x, y) = 5 + 4x+ 4y + 4xy.

Therefore server Si, whose public identity is defined by ωi, gets two polyno-
mials h1

i (x) = f1(x, ωi) and h2
i (x) = f2(x, ωi). More precisely, the polynomial

distributed are listed in the following table

Server identifier h1
i (x) h2

i (x)
S1 ω1 = 3 4 3 + 2x
S2 ω2 = 2 6 + 4x 6 + 5x
S3 ω3 = 6 5 + 2x 1
S4 ω4 = 4 2 + 3x 4x
S5 ω5 = 5 6x 4 + 3x

The value of the conference key κ3 = 3 + 5 × 3 mod 7 = 4. Assume that
servers S1 and S2, belonging to the list L of good servers, send to a user in
C3 correct values in order to enable him to recover κ3. More precisely, the user
gets from S1 the value 4 + 3 × 3 = 6 and the value 6 + 6 × 3 = 3 from S2.
Using the public identifiers of S1 and S2, the user sets up the two pairs of
values (3, 6), (2, 3), and by applying the Lagrange Formula, he interpolates the
polynomial P (x) = 3× x− 3 mod 7. It is easy to see that P (0) = 4, and hence
the user recovers κ3. Moreover, assuming that S5 was bad in the set up phase,
the user gets from the other “supposed to be good” servers S3 and S4 the values
2 + 0 × 3 = 2 and 0 + 4 × 3 = 5 (if they are honest). These values belong to
the polynomial interpolated. Notice that, assuming that S1 and S2 send correct
values (i.e., are honest) and since at most one server (i.e., b = 1) can send an
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incorrect value during the key request phase, at least one of the values send by
S3 and S4 must agree with P (x).

Security. The security of the protocol can be shown by considering the following
possible cases:

– Coalition of users. As long as a group G ∈ G does not recover more than
` conference keys and, more precisely, does not obtain information from
the servers for more than ` conference keys, the group cannot compute any
information about another conference key in an information theoretic sense.
This property easily follows from the assumption that the conference keys
are values of a polynomial of degree `−1 (i.e., they are `-wise independent).
By the `-wise independence, it is easy to see that a coalition holding ` − 1
pairs (s, κs), for any choice of an `-th pair (s

′, κs′) can interpolate a different
polynomial of degree `− 1. Hence, the `-th key is unconditionally secure.

– Coalition of servers. By the property of the VSS, any coalition of b servers,
even putting together all the information received during the set up phase,
cannot compute any information about any conference key, because each
coefficient of the polynomial determining the keys is shared in the VSS by a
t-degree polynomial, where t > b. Moreover, users reconstruct the conference
keys even if at most b servers are bad during the initialization phase and at
most b (possibly different) servers send incorrect information to the users
during the key-request phase. Hence, in this case, the security follows from
the security of the VSS (see, e.g., Theorem 2 in [21]).

– Coalitions of users and servers. The worst scenario we have to consider is
when b servers collude with a group of users G ∈ G who has run the protocol
many times, recovering a bunch of conference keys. For example, assuming
that the bad servers are S1, . . . , Sb, the information the coalition possesses is

given by the partial polynomials hk0

1 (x), . . . , h
k`−1

1 (x), . . . , hk0

b (x), . . . , h
k`−1

b (x)
plus the values received by the users during the previous executions of the
protocol in order to retrieve some conference keys. As the previous cases
have shown, the two types of information by themselves are useless in order
to find out information about a new key. However, it is not difficult to see
that even the joint knowledge of this information does not help, since the
coalition does not have “enough points” to interpolate a new key. Actually,
any new key can still assume any possible value, for each choice of the val-
ues that should be provided by a group of at least t − b other servers (i.e.,
perfectly secure).

Remark. The Dealer D can be easily removed from the above protocol since it
can be removed from the VSS scheme, as shown in [21]: each participant, during
Share, chooses a different secret value and executes the protocol. The real shared
value is given by the sum of the values chosen by the good participants. Along
the same line, each server of the system, during the initialization phase of the
VDKDS can act as the dealer, choosing a different polynomial. In this case the
keys are points of the polynomial obtained by summing up the polynomials chosen
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by the good servers. The presence of the dealer has been used only to simplify
the description of the protocol. Moreover notice that the assumption that there
are at most b bad servers in this scenario implies that the Share Phase of the
VSS protocol is always successfully completed by the good servers.

5 Proactivity

The concept of proactive security was introduced in [17] and applied to the secret
sharing setting in [9]. Basically the idea is that, if the information stored by the
servers in order to share a given secret stays the same for all the lifetime of
the system, then an adversary can eventually break into a sufficient number of
servers to learn or destroy the secret. On the other hand, if time is divided into
periods, and at the beginning of each period the information stored by the servers
in a given time period changes (while the shared secret stays the same), then
the adversary probably does not have enough time to break into the necessary
number of servers. Moreover, the information he learns during period p is useless
during period p+i, for i = 1, 2 . . . ,. So, he has to start a new attack from scratch
during each time period.

The design of a Proactive VDKDS easily follows once we have a Proactive
VSS. Therefore, in the following subsections we address the construction of un-
conditionally secure proactive VSS. Notice that, in [12], a simple solution to set
up a Proactive VDKDS was given, but as we show in Appendix A, it does not
work.

5.1 An Unconditionally Secure Proactive VSS for b ≤ n

4
− 1 bad

servers

The first unconditionally secure proactive VSS was proposed by Stinson and
Wei in [21], where proactivity is added to the basic VSS described before. A
generalization of that scheme has subsequently been given in [15]. We start by
analyzing a weakness of the scheme given in [21], and we show how it can be
used to attack the proactive security property. Then, we show a variation of the
scheme that solves the problem. Moreover, we describe another technique that
can be used to add proactive security to both VSSs given in [21] and [8] for the
case in which the number of bad servers is b ≤ n

4 − 1.

Let t > b + 1. We assume that time is divided in periods p = 1, 2, ...,. Each
good server, at the beginning of the new period, performs the steps given in the
table of the next page to renew the shares [21]. Unfortunately, the symmetry of
the polynomial r`(x, y) can be used by bad servers to break the scheme. Indeed,
during step 2, server P` broadcasts the polynomial h

`
0(x) = r`(x, 0) = r`(0, y).

Hence, any server can compute the values h`
0(ω

k) = r`(0, ωk) = h`
k(0) for k =

1, . . . , n. Then, in step 6, each good player Pm updates his own share hm(x) by
adding the

∑

k∈L h
k
m(x). At this point notice that, according to the VSS, the

only part of the share hm(x) used to reconstruct the secret is hm(0), the first
coefficient of the polynomial, which is updated by

∑

k∈L h
k
m(0).
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Renewal

1. Each server P` selects a random symmetric polynomial

r`(x, y) =

t−1
∑

i=0

t−1
∑

j=0

ri,jx
iyj ,

where r00 = 0 and rij = rji for all i, j.
2. P` sends h`

k(x) = r`(x, ωk) to Pk for k = 1, 2, . . . , n by a secure channel,
and broadcasts h`

0(x) = r`(x, 0).
3. Pk checks whether h`

0(0) = 0 and h`
k(0) = h`

0(ω
k). If the conditions are

satisfied, then Pk computes and sends to Pm the value h`
k(ω

m). Otherwise
Pk broadcasts an accusation of P`.

4. Pm checks whether h`
m(ωk) = h`

k(ω
m) for all values of ` not accused by

n − b servers of the system. If the equation is not true for more than b
values of k, then Pm broadcasts an accusation of P`.

5. If P` is accused by at most b servers, then he can defend himself as follows:
For those Pi he is accused by, P` broadcasts h`

i(x). Then, server Pk checks
whether h`

i(ω
k) = h`

k(ω
i) and broadcasts “yes” or “no”. If there are at

least n− b− 2 servers broadcasting yes, then P` is not a bad server.
6. Pm updates the list of good servers L (i.e., all the values ` for which P`

is accused by at least b+ 1 servers, or found bad in the previous step are
not in L). Then, Pm updates its shares as

hm(x)← hm(x) + hk
m(x)

for all k ∈ L.

But this sum can be computed by everybody using the public broadcasts
in step 2. The consequence is that if a passive adversary breaks into server Pm

during period p, he can still use the share hm(0) during periods p+ i because he
can compute all the updates for this coefficient performed between period p and
period p + i. More precisely, if the adversary learns the shares h1(0), . . . , hb(0)
held by S1, . . . , Sb during period p, and he learns hb+1(0), . . . , hb+s(0) held by
Sb+1, . . . , Sb+s during period p+ 1 (the adversary is mobile), then, he can com-
pute the new shares held by S1, . . . , Sb during period p+1 from h1(0), . . . , hb(0)
and the broadcasts of period p + 1, and if b + s ≥ t he can recover the secret.
Hence, the proactive security property is lost because the renewal scheme does
not render useless the shares learnt during the previous period. Exactly the same
strategy can be applied to break the Renewal procedure given in [15], which is
a generalization of the one given in [21].

Basically, the problem in the above procedure is due to the broadcast in Step
2 of h`

0(x), needed to verify that the update does not destroy the secret, and
the symmetry of r`(x, y). We propose two solutions. The first one changes the
structure of the renewal phase in order to avoid the broadcast. The second keeps
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the same structure as before, but removes the symmetry property of r`(x, y).
Let us describe the first approach: We would like to refresh the shares still
by summing up “new shares” derived from a random symmetric polynomial
r(x, y) =

∑t−1
i=0

∑t−1
j=0 ri,jx

iyj whose known coefficient is r0,0 = 0. Indeed, this
property guarantees that the secret stays the same. However, some server P`

can be bad and can choose a polynomial r`(x, y) where r0,0 6= 0. In order to
prevent this problem, avoiding the broadcast, we generate r(x, y) as r(x, y) =

(x+ y)r∗(x, y), where r∗(x, y) =
∑t−2

i=0

∑t−2
j=0 r

∗
i,jx

iyj is given by the sum of the

partial choices r`(x, y) =
∑t−2

i=0

∑t−2
j=0 r

`
i,jx

iyj of the good players P`, and the
term (x + y) is introduced by each server through a private computation. In
this way, the condition r0,0 = 0 is surely satisfied and the polynomial remains
symmetric. From a technical point of view, the degree of r(x, y) must be t − 1,
in order to enable the reconstruction of the secret. Hence, due to the generation
rule for r(x, y), every r`(x, y) must have degree t− 2.

Renewal

1. Each server P` selects a random symmetric polynomial

r`(x, y) =

t−2
∑

i=0

t−2
∑

j=0

ri,jx
iyj ,

where rij = rji for all i, j.
2. P` sends h`

k(x) = r`(x, ωk) to Pk for k = 1, 2, . . . , n by a secure channel.
3. After receiving h`

k(x), Pk computes and sends the value h`
k(ω

m) to Pm,
for m = 1, . . . , n, by a secure channel.

4. Pm checks whether h`
m(ωk) = h`

k(ω
m) for k = 1, . . . , n. If the equation is

not true for more than b values of k, then Pm broadcasts an accusation of
P`.

5. If P` is accused by at most b servers, then he can defend himself as fol-
lows: For those Pi he is accused by, P` broadcasts h`

i(x). Then, server
Pk checks whether h`

i(ω
k) = h`

k(ω
i) and broadcasts “yes” or “no”. If, for

every broadcasted h`
i(x), there are at least n− b− 2 servers broadcasting

yes, then P` is not a bad server. In this case, if Pi has an h`
i(x) different

from the one that P` has broadcasted, then he stores the broadcasted one.
6. Pm updates the list L of good servers (i.e., the servers found bad in the

previous step are not in L) and updates his share as

hm(x)← hm(x) + (x+ ωm)h∗m(x)

where h∗m(x) =
∑

`∈L
h`

m(x).

Notice that the above procedure is a slightly revised version of the one we
initially proposed [7]: it incorporates the observations and the work done by
Nikov et al. [16] on our preprint [7]. See [16] for details.

Security (Sketch). The security of the above protocol can be shown by proving
that the secret stays the same and the update of the shares cannot be computed
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by a coalition of bad servers. Concerning the first property, notice that the secret
s is shared by the VSS by means of h1(x), . . . , hn(x). More precisely, it is the
first coefficient of the polynomial h(x, 0). Since during Renewal each server Pm

computes a new share as hm(x)← hm(x)+ (x+ωm)h∗m(x), implicitly the secret
becomes the first coefficient of the new polynomial h(x, 0) + xh∗(x, 0), where
xh∗(x, 0) is zero when evaluated at x = 0. Hence, the secret stays the same.

About the security of the update, notice that if the adversary controls b
servers, say S1, . . . , Sb, he can compute at most b < t−1 points h∗m(ω

1), . . . , h∗m(ω
b),

which give no information about the polynomial h∗m(x) used by Pm to update his
share for any m /∈ {1, . . . , b}. Moreover, due to the random choices performed at
each executions of Renewal, it is not difficult to check that the adversary cannot
use the information learnt in period p during period p+1 or in any other period.
Finally notice that, during step 4, a good server P`, in order to defend himself,
broadcasts at most b polynomials h`

k(x), corresponding to the Pk he is accused
by. Assuming that t > b + 1, the polynomials broadcasted give no information
about r`(x, y). This implies again that an adversary can gain no information
about h`

m(x), for every Pm not belonging to the coalition of corrupted servers.

During each time period, the servers need to check if some of them have been
corrupted by the adversary. Indeed, those servers should be rebooted4 in order to
recover a correct functionality. The following procedures enable the detection of
corrupted servers and the recovering of good shares, once the corrupted servers
have been rebooted [21].

Detection

1. P` computes and sends h`(ω
k) to Pk for k = 1, 2, . . . , n by secure channels.

2. Pk checks whether h`(ω
k) = hk(ω

`). Pk then broadcasts an accusation
listk which contains those ` such that h`(ω

k) 6= hk(ω
`) or h`(ω

k) was not
received.

3. Each good server updates the list L so that it does not contain those `
accused by at least b+ 1 servers of the system.

Recovery

1. For each ` /∈ L, every good server Pi computes and sends hi(ω
`) to P`.

2. Upon receiving the data, P` computes the polynomial h`(x) that agree
with the majority of the values h`(ω

k) he has received. P` sets h`(x) as
his new share.

4 We can assume that there is a distributed rebooting scheme enabling a majority of
servers to decide to reboot some other servers when they detect that such servers
have been corrupted. Otherwise, the system manager who installs the programs, is
alerted by the good servers and reboots the bad ones [9].
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To understand the above procedures, notice that, when the secret is shared
by means of the VSS, the shares held by Pi and Pj satisfy hi(ω

j) = hj(ω
i).

This property even holds for the polynomials h∗i (x) and h
∗
j (x) generated during

Renewal. Moreover, due to the choice of the updating rule, i.e., hm(x)← hm(x)+
(x + ωm)h∗m(x), the symmetry hi(ω

j) = hj(ω
i) is still mantained after every

update phase.
These three protocols provide the VSS scheme described in the previous

section with proactive security, and they can be used, as we show later, to set
up a proactive VDKDS.

The second approach for adding proactive security to the basic VSS given in
[21] relies on the use of a generic (non-symmetric) polynomial r`(x, y). Let us
consider the following procedure:

Renewal

1. Each server P` selects a random polynomial

r`(x, y) =

t−1
∑

i=0

t−1
∑

j=0

ri,jx
iyj ,

where r00 = 0.
2. P` sends f

`
k(x) = r`(x, ωk) and g`

k(y) = r`(ωk, y) to Pk by a secure channel,
and broadcasts g`

0(x) = r`(x, 0).
3. Pk checks whether g`

0(0) = 0, g`
0(ω

k) = g`
k(0), and f `

k(ω
k) = g`

k(ω
k). If the

conditions are satisfied, then Pk computes and sends the value f `
k(ω

m) to
Pm by a secure channel, for m = 1, . . . , n. Otherwise, Pk broadcasts an
accusation of P`.

4. Pm checks whether f `
k(ω

m) = g`
m(ωk) for all values of ` not accused by

n − b servers of the system. If the equation is not true for more than b
values of k, then Pm broadcasts an accusation of P`.

5. If P` is accused by at most b servers, then P` can defend himself as follows.
For those Pk he is accused by, P` broadcasts f

`
k(x) and g

`
k(y). Then, server

Pi checks whether g
`
i (ω

k) = f `
k(ω

i), g`
k(ω

i) = f `
i (ω

k), and broadcast “yes”
or “no”. If, for every broadcasted pair of polynomials (f `

k(x), g
`
k(y)), there

are at least n− b− 2 servers broadcasting yes, then P` is not a bad server.
In this case, if Pk has a pair (f `

k(x), g
`
k(y)) different from the one that P`

has broadcasted, then he stores the broadcasted one.
6. Pm updates the list of good servers L (i.e., the values ` for which P` is

accused by at least b+1 servers, or found bad in the previous step are not
in L). Then, Pm updates his share as

hm(x)← hm(x) + fk
m(x)

for all k ∈ L. Moreover, he updates his information for verification (which
is gm(y) = hm(x) at the first execution of Renewal) by setting

gm(y)← gm(y) + gk
m(y)

for all k ∈ L. This information is used in the Detection procedure.
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Security (Sketch). The security of the protocol follows from the following ob-
servations: first of all notice that from the broadcast g`

0(x) = r`(x, 0) 6= r`(0, y),
the value f `

k(0) = r`(0, ωk) cannot be computed. Moreover, every participant,
during steps 3 and 4, checks that the update does not destroy the shared secret,
and that the polynomials they have received are consistent. Moreover, as we
have already seen before, the condition t > b + 1 ensures that the polynomials
broadcasted in step 5 by P`, to defend himself against at most b bad Pi, do
not give any information about r`(x, y), and hence do not give any information
about f `

m(x) for any Pm not belonging to the coalition of bad servers.

This procedure can be applied to both VSSs given in [21] and [8] when
b ≤ n

4 − 1. In fact, when applied to the scheme in [8], the polynomial gm(y)
in Step 5 at the first execution of Renewal is already different from hm(x): it
is the polynomial gm(y) used for verification given by the VSS described in [8].
Actually, the above procedure has the structure of the procedure given in [21],
but it has been modified according to the design of the VSS given in [8].

The following protocols enable the detection of corrupted servers and the
recovering of good shares for the rebooted servers.

Detection

1. P` computes and sends h`(ω
k) to Pk for k = 1, 2, . . . , n by secure channels.

2. Pk checks whether h`(ω
k) = gk(ω

`). Pk then broadcasts an accusation
listk which contains those ` such that h`(ω

k) 6= gk(ω
`) or h`(ω

k) was not
received.

3. Each good server updates the list L so that it does not contain those `
accused by at least b+ 1 servers of the system.

Recovering

1. For each ` /∈ L, every good server Pi computes and sends hi(ω
`) and gi(ω

`)
to P`.

2. Upon receiving the data, P` computes two polynomials h`(x) and g`(y)
that agree with the majority of the values h`(ω

k) and g`(ω
k) it has re-

ceived. P` sets h`(x) as its share and g`(y) as its verification information.

We would like to point out that both the Renewal phases described before
can be implemented by using random one-time pads and the broadcast channel,
instead of using secure channels for the checks of consistency of the shares.
Such an approach enables saving one round of communication, but the resulting
procedures are perhaps less readable than the previous ones.

5.2 A Proactive VDKDS

At this point, we have all the tools to set up a Proactive VDKDS. To summarize:
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– In the protocol for a VDKDS, described in Section 4, the keys are values of a
polynomial whose coefficients are (verifiably) shared among the servers. More
precisely, to set up the DKDC, each server Pm chooses a random polynomial

Km(x) =

`−1
∑

z=0

k(m)
z xz.

Then, Pm uses ` different instances of the VSS given in Section 3, i.e., one
for each coefficient, to distribute in a verifiable way the coefficients of his
polynomial Km(x). According to the VSS, each server Pk receives ` polyno-

mials from Pm, one for each coefficient k
(m)
z . The conference key for Cs is

then defined to be κs = K(s), where

K(x) =
`−1
∑

z=0

kzx
z =

∑

m∈L

Km(x)

and L is the list of good servers. At the end of the set up phase, every server

Pk stores ` polynomials, h
k0

k (x), . . . , h
k`−1

k (x), each sharing one coefficient
of K(x), by summing up the partial shares/polynomials received for each

coefficient k
(m)
z from servers Pm belonging to the list of good servers.

– Therefore, a straightforward solution to gain proactive security could be to
directly apply, at the beginning of each time period, the Detection, Recov-
ery and Renewal procedures for each coefficient of the polynomial K(x),
generated by the good servers during the set up phase of the system.

6 Conclusions

In this paper we have shown how to set up a Robust Distributed Key Distri-
bution Scheme, enabling a set of servers to jointly realize a Key Distribution
Center. We have used unconditionally secure verifiable proactive secret sharing
schemes as a building block. As well, we have revised the unconditionally secure
VSS described by Stinson and Wei in [21], proposing a modified version which
is proactively secure. Moreover, we have given proactive routines that can be
applied to both schemes given in [21, 8] when b < n

4 . Since the proactive security
property can be useful in several settings in which the adversary is mobile, the
applicability of such schemes has independent interest of the specific application
to key distribution that has been addressed in this paper. In the full version of
the paper we will provide complete proofs, and the case in which the number of
bad servers is b < n

3 will be considered as well.
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A A (k, n, C, G)-DKDS

In a (k, n, C,G)-DKDS, each user can compute a common key by interacting
with any k-subset of the n servers at his choice. In [12], a construction based on
bivariate polynomials for a (k, n, C,G)-DKDS was proposed. Basically, it works
as follows: Each of the servers S1, . . . , Sk, performing the initialization phase,
constructs a random bivariate polynomial P i(x, y) of degree k−1 in x, and `−1
in y, and sends Qi

j(y) = P i(j, y) to the server Sj , for j = 1, . . . , n. Server Sj

computes his private information, Qj(y), by adding the k polynomials received
from S1, . . . , Sk. A user who wants to compute a conference key, κh, sends to (at
least) k servers a key request. Each server Sj , invoked by the user, checks that the
user belongs to Ch, and sends to the user the value Qj(h). Using the k values
received from the servers, and applying the Lagrange formula for polynomial
interpolation, each user in Ch recovers the secret key P (0, h) =

∑k

i=1 P
i(0, h)

(see [12] for details).

The construction is correct and secure, according to the model considered in
[12]. In order to introduce verifiability and proactivity, the following approach
was suggested in [12]. Time is divided in periods. At the beginning of period t,
for i = 1, . . . , k, each server Si performing the initialization, chooses a random
polynomial P t

i (x, y) of degree k−1 in x and `−1 in y such that P
t
i (0, h) = 0 for

each h ∈ Zq. Then, for i = 1, . . . , k, server Si sends, for j = 1, . . . , n, the univari-
ate polynomial Qt

i,j(y) = P t
i (j, y) to server Sj , and broadcasts the univariate

polynomial P t
i (x, c), where c is a public point. Then, for j = 1, . . . , n, server

Sj checks that P
t
i (x, c) evaluated in x = 0 is zero (i.e., P t

i (0, c) = 0) and that
the broadcasted polynomial is consistent with Qt

i,j(y) (i.e., Q
t
i,j(c) = P t

i (j, c)).
Finally, if the check is satisfied, Sj updates his private information by comput-

ing Qj(y)← Qj(y) +
∑k

i=1 Q
t
i,j(y). Unfortunately, a server sending information

during the update phase can cheat, as shown by the following example.

Example. Let us consider a (3, 3, C,G)-DKDS. The polynomial P t
i (x, y) cho-

sen by Si at the beginning of the period in order to update the system is of degree
2 in x and `−1 in y. A cheating Si can choose P

t
i (x, y) = a+ b1x+ b2x

2+PY (y)

where a = −PY (c) and PY (y) =
∑`−1

i=1 pjy
j . It is not difficult to check that

P t
i (0, c) = 0 and that P

t
i (x, c) = b1x+ b2x

2 is equal to Qt
i,j(y) when the first one

is evaluated in j and the second one in c. But P t
i (0, c

′) 6= 0 for any c′ 6= c.


