
Threshold Cryptosystems Based on Factoring

Jonathan Katz1,3 and Moti Yung2

1 Department of Computer Science, University of Maryland (College Park)
jkatz@cs.umd.edu

2 Department of Computer Science, Columbia University
moti@cs.columbia.edu

3 Work done while at Columbia University and Telcordia Technologies

Abstract. We consider threshold cryptosystems over a composite mod-
ulus N where the factors of N are shared among the participants as the
secret key. This is a new paradigm for threshold cryptosystems based on
a composite modulus, differing from the typical treatment of RSA-based
systems where a “decryption exponent” is shared among the participants.
Our approach yields solutions to some open problems in threshold cryp-
tography; in particular, we obtain the following:

1. Threshold homomorphic encryption. A number of applications (e.g.,
electronic voting or efficient multi-party computation) require thresh-
old homomorphic encryption schemes. We present a protocol for
threshold decryption of the homomorphic Goldwasser-Micali encryp-
tion scheme [34], answering an open question of [21].

2. Threshold cryptosystems as secure as factoring. We describe a thresh-
old version of a variant of the signature standards ISO 9796-2 and
PKCS#1 v1.5 (cf. [39, Section 11.3.4]), thus giving the first thresh-
old signature scheme whose security (in the random oracle model)
is equivalent to the hardness of factoring [12]. Our techniques may
be adapted to distribute the Rabin encryption scheme [44] whose
semantic security may be reduced to the hardness of factoring.

3. Efficient threshold schemes without a trusted dealer. Because our
schemes only require sharing of N — which furthermore need not be
a product of strong primes — our schemes are very efficient (com-
pared to previous schemes) when a trusted dealer is not assumed
and key generation is done in a distributed manner.

Extensions to achieve robustness and proactivation are also possible with
our schemes.

1 Introduction

Threshold cryptosystems provide for increased security and availability of a par-
ticular cryptographic protocol by distributing the protocol among a number of
participants. In a k-out-of-` threshold scheme, the protocol is distributed in such
a way that an adversary who corrupts at most k − 1 participants (and learns
all their local information) still cannot determine the secret key of the system

194 J. Katz and M. Yung

or break the underlying cryptographic protocol. On the other hand, increased
availability is achieved by ensuring that only k participants are needed in order
to carry out the computation and deliver the result. Going further, systems can
be designed in a robust manner, such that even a malicious adversary who causes
up to k − 1 (k ≤ `/2) players to deviate arbitrarily from the protocol cannot
prevent the correct output from being computed. Threshold schemes can also
be proactivized to withstand the compromise of even all participants over the
lifetime of the protocol, as long as only k − 1 participants are corrupted during
each time period; they may also be extended to handle adaptive adversaries who
decide whom to corrupt at any point during execution of the protocol.

A long line of research has focused on threshold cryptography, with particular
emphasis on threshold signature schemes (in many cases, deriving a threshold
decryption scheme from a related signature scheme is easy). The approach was
initiated by [17–19], and the first provably secure schemes for RSA- and discrete-
logarithm-based signature schemes were given in [16, 30, 35]. Subsequent work
focused on adding robustness to existing schemes [24, 31, 32] and on threshold
decryption schemes with security against chosen-ciphertext attacks [47, 9, 20].

The above protocols are all proven secure with respect to a non-adaptive ad-
versary who must choose which participants to corrupt before protocol execution
begins (this is the type of adversary we consider here). Many recent works have
dealt with stronger classes of adversaries, including adaptive [2, 7] and proactive
[41] adversaries. We refer the reader elsewhere for more comprehensive surveys
of the existing literature (e.g., [28, 36]).

The protocols mentioned above assume a dealer who distributes keys to the
participants before the protocol begins. The dealer must be minimally trusted
not to reveal the secret key and therefore represents a single point of failure
for the entire system. Thus, it is often desirable to distribute the key-generation
phase among the participants. This was first accomplished for discrete-logarithm-
based cryptosystems in [32, 8] (building on [43]), and for RSA-based cryptosys-
tems in [5] (for passive adversaries) and [27] (for active adversaries).

There is still a need to design threshold schemes for many specific cryptosys-
tems (most previous research on threshold cryptography was restricted to RSA-
and discrete-logarithm-based schemes). First, note that for threshold cryptogra-
phy to become truly practical, it remains important to improve the efficiency and
conceptual simplicity of existing solutions.1 Furthermore, as pointed out many
times previously [29, 21, 14, 37, 13], threshold homomorphic encryption schemes
are useful for achieving such goals as electronic voting and efficient multi-party
computation. Threshold schemes have been given previously [43, 21, 14] for the
El Gamal (which is homomorphic under group multiplication) and Paillier [42]
(which is homomorphic under addition) cryptosystems. Yet, for some applica-
tions, homomorphism over, e.g., Z2 is required or sufficient [29, 38, 37, 13] and
hence other homomorphic schemes may not work or may be “overkill” for the
problem at hand. Clearly, additional approaches yielding threshold homomor-

1 This is the motivation for the study of threshold cryptography since, in a theoretical
sense, “solutions” already exist using generic multi-party computation [33].

Threshold Cryptosystems Based on Factoring 195

phic encryption are needed (and this was left as an explicit open question in
[21]; see also [13]).

1.1 Our Contributions

Threshold homomorphic encryption. We show how to achieve threshold
decryption for the Goldwasser-Micali (GM) encryption scheme [34], whose secu-
rity is based on the hardness of deciding quadratic residuosity. The GM encryp-
tion scheme is homomorphic over Z2. As mentioned above, (semantically-secure)
threshold homomorphic encryption schemes have many important applications;
for example, efficient multi-party computation can be based on any (efficient)
scheme of this type [29, 13]. Threshold GM encryption can also be used for dis-
tributed tallying in electronic voting [37].
Concurrent with the present work, a variant threshold GM-like cryptosystem

has been constructed [13] using an alternate approach. However, this scheme
(which builds on [29]) requires the DDH assumption in Z∗N , whereas the security
of our construction relies only on the quadratic residuosity assumption. Indeed,
eliminating this assumption is left as an open question in [13]. We believe our
solution also offers a more efficient and conceptually simpler method. Finally,
our scheme has the added advantage of allowing for efficient distributed key
generation when a trusted dealer is not assumed; this is not possible in [13]
because they require N to be a product of safe primes.2

Threshold cryptosystems based on factoring. We are not aware of any
previous constructions of threshold cryptosystems whose security can be reduced
to the assumption that factoring is hard. Here, we propose a novel and efficient
distributed version of the Rabin-Williams signature scheme [39, Section 11.3.4]
(see also [44]), variants of which have been standardized. Security of this scheme
has recently been shown [12] to be equivalent to the hardness of factoring in
the random oracle model (see also earlier work of [3]). Our techniques may be
adapted for other cryptosystems whose security is based on factoring, such as
the Rabin encryption scheme [44].

Efficiency improvements. The protocols we present are all efficient and prac-
tical threshold schemes. When a trusted dealer cannot be assumed (and key gen-
eration must therefore be done in a distributed fashion), our threshold schemes
are more efficient than previous solutions not requiring a trusted dealer [15,
22]. The threshold schemes presented here may be easily executed in a modular
manner following a “streamlined” version of the distributed key-generation pro-
tocols of [5, 27]: all information required by the present schemes is in place upon
completion of these key-generation protocols, and we do not require that N be
a product of safe primes. A “streamlined” version of these protocols may be
used because we do not require computation of an inverse over a shared (secret)

2 The recent work of [1] shows how N of this form can be generated efficiently in a
distributed fashion; even so, it remains more efficient to generate N without this
added requirement.

196 J. Katz and M. Yung

modulus (and therefore are done once N has been generated). We are therefore
able to avoid altogether the step whose efficiency is improved by [10].

Finally, we believe the methods outlined in this paper are interesting in their
own right; the sharing of the factors of N alone, without the need to additionally
share a “decryption exponent”, is a new paradigm for threshold cryptography
over composite moduli and may prove useful in the design of future schemes. It
is specifically useful whenever the function to be computed can be expressed as
a combination of the factors and where the computation of its partial results is
enabled by shares of the factors.

2 Model and Definitions

2.1 The Model

Participants. The participants are ` servers {P1, . . . , P`} and a trusted dealer
D.3 The dealer generates a public key N for the underlying cryptosystem and
distributes shares to each of the participants. After the dealing phase, the dealer
does not take part in executions of the protocol. Following [30], we assume the
participants are connected by a complete network of private channels. In addi-
tion, all players have access to an authenticated broadcast channel so that the
true sender of a message can always be correctly determined. These assump-
tions allow us to focus on high-level descriptions of the protocols; however, they
may be instantiated using standard cryptographic techniques (in the proactive
setting, care needs to be taken; see [41, 35]).

The adversary. Our k-out-of-` schemes assume a non-adaptive adversary who
may corrupt up to k − 1 participants in advance of protocol execution. The ad-
versary has access to all information available to the corrupted players, including
their secret keys, messages they receive, and messages broadcast to all players.
One may consider two types of adversaries: passive adversaries who follow the
protocol faithfully yet monitor all information available to corrupted partici-
pants, and active adversaries who may cause participants to deviate arbitrarily
from the protocol. We consider both types of adversaries in what follows. In the
case of threshold signature schemes, the adversary may submit signing requests
to the system at any time; in the case of threshold decryption, we consider both
chosen plaintext and chosen ciphertext attacks.

2.2 Security

Formal definitions of security for threshold cryptosystems have appeared else-
where [31]. We describe, informally, our requirements. First, we want the security
of the threshold scheme to be equivalent to the security of the original scheme
even when an adversary has corrupted k− 1 servers and obtained all their local

3 We stress that this trusted dealer is not essential to our schemes since a distributed
algorithm (adapting [5, 27]) may be run when a dealer is not available.

Threshold Cryptosystems Based on Factoring 197

information. To prove that this requirement is met, we reduce the security of the
threshold scheme to that of the original scheme by showing how an adversary
attacking the original scheme can simulate the view of (up to) k − 1 servers in
the threshold scheme. Following [31], we call such threshold protocols simulat-
able. An additional requirement we will consider is robustness: for any active
adversary who causes at most k− 1 (k ≤ `/2) participants to deviate arbitrarily
from the protocol, the correct result can always be computed by the remaining
(uncorrupted) participants.

3 A Threshold Homomorphic Encryption Scheme

We begin by describing how to achieve threshold decryption for the well-known
homomorphic encryption scheme of Goldwasser and Micali [34] (henceforth,
GM). The GM encryption scheme is as follows: the public key is a compos-
ite N = pq, where p and q are prime and p = q = 3 mod 4. The private key
consists of the factorization of N . To encrypt bit b ∈ {0, 1}, choose a random
element r ∈ ZN and send C = (−1)br2 mod N . Decryption of ciphertext C
proceeds by determining whether C is a quadratic residue or not. To do this,
first calculate the Jacobi symbol J = (CN). If J 6= 1, the ciphertext is ill-formed
(i.e., the encryption algorithm was not run honestly, or else the message was
corrupted in transmission); therefore, simply output ⊥. If J = 1, we may decide
whether C is a quadratic residue by computing b′ = C(N−p−q+1)/4 mod N ; note
that b′ = ±1 and furthermore C is a quadratic residue iff b′ = 1. The original
plaintext can be recovered as b = (1− b′)/2. This scheme is semantically secure
under the quadratic residuosity assumption [34].

3.1 An `-out-of-` Protocol

For simplicity and clarity of exposition, we describe in this section a protocol for
“basic” threshold GM decryption (cf. Figure 1) which assumes a trusted dealer
and is an `-out-of-` solution. Thus, all ` participants are needed in order to
decrypt a ciphertext; on the other hand, it remains infeasible for any adversary
who corrupts ` − 1 or fewer participants to decrypt a given ciphertext. In the
following section, we discuss extensions and modifications which allow for the
more general k-out-of-` threshold, provide robustness, and enable proactivation
of the protocol. Additionally, we discuss how to remove the trusted dealer and
perform the initial key generation in a distributed manner.

Key distribution. The dealer generates primes p, q = 3 mod 4 (where |p| =
|q| = n) and sets N = pq. The public key is N , and the private key is computed
as d = (N − p− q + 1)/4; note that d is always an integer. For all i, the dealer
chooses integers pi, qi ∈R (0, 2

2n) such that pi = qi = 0 mod 4. Finally, the dealer

sets p0 = p −
∑`
i=1 pi and q0 = q −

∑`
i=1 qi. The dealer sends (pi, qi) to player

i and broadcasts (N, p0, q0). We note that it would suffice for the dealer to send

198 J. Katz and M. Yung

Dealing Phase

Input: Composite N and primes p, q (|p| = |q| = n) such that N = pq
with p, q = 3 mod 4

1. Choose p1, q1, . . . , p`, q` ∈R (0, 2
2n) such that pi = qi = 0 mod 4, for all i

2. Set p0 = p−
∑`

i=1 pi and q0 = q −
∑`

i=1 qi
3. Send (pi, qi) to player i
4. Broadcast (N, p0, q0)

Decryption Phase

Input: Ciphertext C

1. All players compute J = (C
N
) (this computation is done publicly)

2. If J 6= 1, all players output ⊥ and stop
3. Otherwise (J = 1), player i broadcasts bi = C

(−pi−qi)/4 mod N
4. All players publicly compute b0 = C

(N−p0−q0+1)/4 mod N
5. The decrypted bit b is computed as b =

(

1−Π`
i=0bi mod N

)

/2

Fig. 1. `-out-of-` decryption for the GM cryptosystem

(pi + qi)/4 to each party — and this is likely what would be done in practice —
but we prefer the present description for pedagogical reasons.

Decryption. Decryption of a ciphertext C proceeds as follows: first, the Jacobi
symbol J = (CN) is computed; this can be computed in polynomial time even
without knowledge of the factorization of N . If J 6= 1, all players simply output
⊥. Otherwise, player i outputs bi = C

(−pi−qi)/4 mod N (note that, by design,
the exponent is an integer and hence bi can be efficiently computed). Players
publicly compute b0 = C

(N−p0−q0+1)/4 mod N (again, by design, the exponent is
an integer). Deciding whether C is a quadratic residue may be done by computing

b′ = Π`
i=0bi mod N . The decrypted bit is simply b =

1−b′

2 .

Theorem 1. The protocol of Figure 1 is simulatable for any adversary who
passively eavesdrops on at most `−1 parties. This implies the semantic security of
the encryption scheme for such an adversary, assuming the hardness of deciding
quadratic residuosity.

The proof is similar to the more involved proof of security for the Rabin-Williams
signature scheme given below (cf. Theorem 4), and is therefore omitted.

3.2 Extensions

Reducing the threshold. It is a severe limitation to require ` active servers in
order to decrypt. More preferable is a k-out-of-` solution in which only k servers
are required for decryption. A number of techniques exist for accomplishing this
using the above protocol as a starting point; we sketch two such solutions here
(but see [4] for another approach).

Threshold Cryptosystems Based on Factoring 199

One approach is to adapt the suggestions of Rabin [45] to our setting. First,
the dealer fixes a prime P > 22n which is broadcast to all participants. Then,
for each pi (and also qi), the dealer chooses a random (k− 1)-degree polynomial
fi(·) over the field ZP such that fi(0) = pi. To player j, the dealer sends fi(j)
for 1 ≤ i ≤ `. This achieves a k-out-of-` secret sharing of the {pi} (and also the
{qi}). Decryption proceeds as before, with each player i broadcasting its share bi.
In addition, players prove correctness of their shares using one of the robustness
techniques described below. If player i cannot prove correctness of his share (or,
more generally, if player i fails to participate), the remaining players can publicly
reconstruct (pi, qi) using the shares they have been given. The correct share bi
may then be computed publicly and included in the calculation of b. We note
that, in case a trusted dealer is not available, each player may itself deal shares
of (pi, qi) to the other players. If robustness is desired for this step, verifiable
secret sharing (VSS) may be used. Details appear in [45].

A problem with this approach is that it may unfairly penalize servers which
are temporarily off-line or otherwise unable to participate in an execution of the
protocol. If this happens, this player’s share is publicly reconstructed and hence
available to an adversary eavesdropping on the protocol. Note that it may be
much easier for an adversary to disconnect or prevent communication from a
player than to corrupt a player (even passively). By “disconnecting” users one-
by-one — possibly in parallel — an adversary may be able to obtain the secret
key of the system.4

An alternative is to use ideas motivated by the protocols of Frankel, et al. [26].
Let L = `!. Instead of the `-out-of-` additive sharing illustrated in Figure 1, the
dealer now performs k-out-of-` polynomial sharing as follows: The dealer chooses
s∗ ∈R (0, 2

2n) subject to s∗ = 0 mod 4, and additionally chooses a (k − 1)-
degree polynomial f over the integers — with coefficients chosen uniformly from

{0, 4L, . . . , L323nk} — such that f(0) = L2s∗. The dealer distributes si
def
= f(i)

to player i. Finally, the dealer broadcasts the value p + q − L2s∗. To decrypt,
the players first choose a random subset Λ consisting of k players. Each player
in Λ computes the appropriate Lagrange interpolation coefficient zi,Λ and sets
his (temporary) share to ŝi = zi,Λ · si. Note that, due to the careful choice of
the polynomial f , the {ŝi} may be computed over the integers and furthermore
ŝi = 0 mod 4 for all i. The {ŝi}i∈Λ thus constitute a k-out-of-k additive sharing
of L2s∗, and may be used to decrypt as in Figure 1. Techniques to achieve
robustness for the above approach are given in [26].

Theorem 2. The protocol of Figure 1 modified using either of the approaches
described above gives a k-out-of-` protocol which is simulatable for any adversary
who passively eavesdrops on at most k − 1 parties.

(Informal Idea of the) Proof The approach of Rabin [45] may be viewed
as a “generic” approach which converts any `-out-of-` scheme to a k-out-of-`
scheme. The approach of Frankel, et al. [26] must be more carefully modified for

4 This was pointed out to us by an anonymous referee.

200 J. Katz and M. Yung

the cryptosystem at hand; for the modification sketched above, however, a proof
follows easily using their techniques.

Robustness. We may distinguish two methods for adding robustness to the
above protocol: methods which work for arbitrary N , and methods which work
only when N is a product of strong primes5. Methods specialized for the latter
case can be more efficient; on the other hand, when distributed key generation
is required, methods which work for arbitrary N may be preferred because dis-
tributed generation of N a product of safe primes [1] is less efficient.

Gennaro, et al. [31] give two methods for verifying correctness of the partial
outputs bi when N is a product of strong primes. One method, which is non-
interactive, requires the dealer to distribute verification information to all players
during the dealing phase; namely, Vi,j is sent to player i to enable his verification
of player j. When executing the protocol, player i outputs bi and also bi,j for all
j; player j verifies the correctness of bi using Vj,i and bi,j . This requires O(`

2)
memory for each player, and also increases the communication of the protocol
(per player) to O(`2).

A second approach of [31] requires the dealer to choose a random element (of
high order) g ∈ Z∗N and broadcast g along with witnesses wi = g(−pi−qi)/4 mod
N , for all i. After player i broadcasts bi, he engages in an (interactive) zero-
knowledge proof with all other players in which he proves that logg wi = logC bi.
Unfortunately, this approach seems to require interaction even in the random
oracle model. More recently, Shoup [46] (based on earlier work of [11]) describes a
non-interactive, zero-knowledge proof (in the random oracle model) for equality
of discrete logarithms. Here, players work in the subgroup of quadratic residues
QN ⊂ Z∗N : the dealer chooses g ∈ QN and player i now proves that logg wi =
logC2 b2i (squaring is necessary to ensure that values are in QN).

The above approaches suffice forN a product of strong primes. For generalN ,
however, we must use other techniques to achieve robustness.6 One possibility
is to use the cryptographic program-checking method of [24], which requires
interaction between each pair of parties (this interaction can be reduced to only
two rounds using a random oracle). Another approach extends the witness-based
approach above. Using a random oracle, players may, as above, give an efficient,
non-interactive, zero-knowledge proof [11] that logg wi = logC bi. A difficulty
here is that soundness is only guaranteed if g is of high order; however, as shown
in [27], a set (of super-logarithmic size) of random elements of Z∗N generates a
large-order subgroup of Z∗N with all but negligible probability. Soundness can
thus be guaranteed by fixing such a set as part of the dealing phase and having
players give a non-interactive proof with respect to each element in this set.
Fouque and Stern [22] suggest another method for achieving robustness; they
require N of a special form but show how such N can be generated efficiently in
a distributed manner.

5 That is, N = pq with p = 2p′ + 1 and q = 2q′ + 1, where p, q, p′, q′ are all prime.
6 Although we still refer to a dealer, the techniques described here can be implemented
easily following the (robust) distributed key-generation protocol of [27].

Threshold Cryptosystems Based on Factoring 201

The above approaches to proving correctness of exponentiation modulo N
allow proofs of correctness for the partial shares bi broadcast by each player in
the protocol. Theorems 1 and 2, together with the results cited above, thus yield
the following theorem:

Theorem 3. The protocol of Figure 1 augmented with any of the robustness
techniques described above (appropriate for the modulus N) and any of the ap-
proaches for achieving a k-out-of-` (k ≤ `/2) threshold (as described in Theorem
2) results in a robust protocol which is simulatable for any adversary who actively
controls at most k − 1 parties.

Removing the trusted dealer. The efficiency improvement of the current
protocol is most evident when a trusted dealer is not assumed, and the public
modulus must be generated in a distributed fashion. In this case, our scheme has
two advantages: (1) moduli of a special form (i.e., N a product of strong primes)
are not required, in contrast with some recent solutions (e.g., [46]). (Even though
a protocol has recently been given [1] for efficiently generating N of this form
in a distributed fashion, this protocol remains less efficient than protocols for
more general N [5, 27].) Furthermore, (2) an expensive step of the distributed
key-generation protocol can be skipped entirely. Specifically, computation of an
inverse7 over ϕ(N) (recall that ϕ(N) must remain hidden from the players) is
not required in our scheme.
The protocol of Figure 1 may be combined modularly with the distributed

key-generation protocols of [5, 27]. Following execution of these key-generation
protocols, all the players already have additive shares (pi, qi) of the factors of
N . A small complication is that the protocol requires all players to have pi =
qi = 0 mod 4. To deal with this, simply have player i choose pi = qi = 0 mod 4.
Additionally, the “public remainder” may be set to (p0, q0) = (3, 3). Decryption
is then done as before. A similar approach was used in, e.g., [5] where they
require p = q = 3 mod 4.

Proactive security. Proactive security may be added to our protocols using
known techniques. For example, if the approach of Rabin [45] is used to achieve k-
out-of-` threshold, the generic proactivation techniques given there will work here
as well. Similarly, if the approach of Frankel, et al. [26] is used, the proactivation
techniques given there will also work for the present protocol. Due to space
limitations, we refrain from a detailed description of these techniques.

Chosen-ciphertext security. A generic method for making threshold cryp-
tosystems secure against chosen-ciphertext attack was recently described [20],
adapting the method of Naor and Yung [40] for the random oracle model. What
is required are two schemes and an honest-verifier ZK proof of knowledge that
two encryptions are of the same plaintext. Such a proof system for the GM
cryptosystem is presented in Appendix A. Although the protocol given there
is interactive, it can be made non-interactive (and reasonably efficient) in the
random-oracle model.
7 This is precisely the step whose efficiency is improved by [10]. Here, we avoid this
step altogether!

202 J. Katz and M. Yung

4 A Threshold Signature Scheme Based on Factoring

Distributing the prime factors of the modulus among the participants offers a
new paradigm for the construction of threshold systems over composite moduli.
As a further example of the applicability of our technique, we describe a method
for distributing the Rabin-Williams signature scheme [44], variants of which have
been standardized as ISO 9796-2 and PKCS#1 v1.5. This scheme is particularly
interesting since it offers the first threshold signature scheme whose security can
be based on the hardness of factoring (in the random oracle model) [12].

4.1 The (Modified) Rabin Signature Scheme

The modified Rabin signature scheme [39, Section 11.3.4] is defined as follows:
a public key is generated by choosing two primes p, q of length n such that
p = 3 mod 8 and q = 7 mod 8. The public key is set to N = pq (N of this form
are called Williams integers). The private key is d = (N − p− q + 5)/8.
Messages m to be signed are assumed to be appropriately encoded and the

resulting underlying message space isM = {m : m = 6 mod 16} (see [12]). First,
the Jacobi symbol J = (mN) is computed. If J = 1, set m̃ = m; if J = −1, set
m̃ = m/2 (note that there is only negligible probability that J 6= 1,−1). The
signature is computed as s = m̃d mod N .
To verify signature s on message m (where m = 6 mod 16), first compute

m̃ = s2 mod N . Then, verify the following:

– If m̃ = 6 mod 8, verify whether m
?
= m̃

– If m̃ = 3 mod 8, verify whether m
?
= 2m̃

– If m̃ = 7 mod 8, verify whether m
?
= N − m̃

– If m̃ = 2 mod 8, verify whether m
?
= 2(N − m̃)

We refer the reader to [39, Section 11.3.4] for a proof of correctness and further
discussion.

4.2 An `-out-of-` Protocol

As above, we present the `-out-of-` solution here for simplicity (cf. Figure 2);
extensions as discussed in Section 3.2 are applicable here as well.

Key distribution. The dealer generates primes p, q (where |p| = |q| = n,
p = 3 mod 8, and q = 7 mod 8) and sets N = pq. The public key of the protocol
isN , and the private key (see Section 4.1) is d = (N−p−q+5)/8. For i = 1, . . . , `,
the dealer then chooses p′i, q

′
i ∈R (0, 2

2n) such that pi = qi = 0 mod 8. The dealer

sets p0 = p−
∑`
i=1 pi and q0 = q −

∑`
i=1 pi. Finally, the dealer sends (pi, qi) to

player i and broadcasts (p0, q0).

Signature generation. We assume the message m ∈ M to be signed is
already encoded in some appropriate agreed-upon manner (i.e., as discussed

Threshold Cryptosystems Based on Factoring 203

Dealing Phase

Input: Composite N and primes p, q (|p| = |q| = n) such that N = pq
with p = 3 mod 8 and q = 7 mod 8

1. Choose p1, q1, . . . , p`, q` ∈R (0, 2
2n) such that pi = qi = 0 mod 8, for all i

2. Set p0 = p−
∑`

i=1 pi and q0 = q −
∑`

i=1 qi
3. Send (pi, qi) to player i
4. Broadcast (N, p0, q0)

Signature Generation Phase

Input: Message m = 6 mod 16 (appropriately encoded)

1. Player i computes J = (m
N
) (this computation is done publicly)

2. If J = 1, set m̃ = m; else set m̃ = m/2
3. Player i broadcasts si = m̃

(−pi−qi)/8 mod N
4. All players publicly compute s0 = m̃

(N−p0−q0+5)/8 mod N
5. The signature s is computed as s = Π`

i=0si mod N

Fig. 2. `-out-of-` signing for the Rabin signature scheme

above). First, the Jacobi symbol J = (mN) is computed publicly (note that the
Jacobi symbol can be computed in polynomial time even without knowledge of
the factorization of N). If J = 1, define m̃ = m; if J = −1, define m̃ = m/2;
this step may be done publicly as well.
The desired signature is s = m̃d = m̃(N−p−q+5)/8 mod N . Player i broadcasts

the value si = m̃(−pi−qi)/8 mod N (note that, by design, the exponent is an
integer and hence si can be efficiently computed). Players publicly compute
s0 = m̃(N−p0−q0+5)/8 mod N (again, by design, the exponent is an integer).
Finally, the signature is computed as s = Π`

i=0si mod N . Verification of the
signature is exactly as described in Section 4.1.

Theorem 4. The protocol of Figure 2 is simulatable for any adversary who
passively eavesdrops on at most ` − 1 parties. This implies that the signature
scheme is existentially unforgeable under chosen message attacks, assuming the
hardness of factoring (in the random oracle model).

Proof. A description of a simulator for the dealing phase and the signature
generation phase appears in Figure 3. We assume (without loss of generality)
that the adversary eavesdrops on players 1, . . . , `−1. Simulatability of the dealing
phase is evident from the following:

– The {pi, qi}1≤i≤`−1 have the same distribution as in a real execution of the
protocol.

– The distribution on (p0, q0), conditioned on the values of {pi, qi}1≤i≤`−1

seen by the adversary, is statistically indistinguishable from the distribu-
tion on (p0, q0) in a real execution of the protocol. This is because, for any
p, p∗ < 2n+1, the distributions {p − p1}p1∈R(0,22n) and {p

∗ − p1}p1∈R(0,22n)

are statistically indistinguishable.

204 J. Katz and M. Yung

Simulation of Dealing Phase

Input: Composite N where |N | = 2n

1. Choose p1, q1, . . . , p`, q` ∈R (0, 2
2n) such that pi = qi = 0 mod 8

2. Choose random p∗, q∗ such that |p∗| = |q∗| = n, p∗ = 3 mod 8, and q∗ = 7 mod 8
3. Set p0 = p

∗ −
∑`

i=1 pi and q0 = q
∗ −

∑`
i=1 qi

4. Send (pi, qi) to player i, for 1 ≤ i ≤ `− 1
5. Broadcast (p0, q0)

Simulation of Player ` in Signature Generation Phase

Input: Message m = 6 mod 16 (appropriately encoded); signature s

1. Compute J = (m
N
)

2. If J = 1, set m̃ = m; else set m̃ = m/2
3. Compute si = m̃

(−pi−qi)/8 mod N , for 1 ≤ i ≤ `− 1
4. Compute s0 = m̃

(N−p0−q0+5)/8 mod N
5. Broadcast s` = s/

(

Π`−1
i=0 si

)

mod N

Fig. 3. Simulator for `-out-of-` threshold Rabin signature scheme

Simulatability of the signature generation phase (in particular, the value s`)
follows easily from the simulatability of the dealing phase.

Efficient extensions to achieve optimal threshold, robustness, proactivation,
and distributed key generation are all possible as outlined in Section 3.2. Also,
the above method extends to give threshold decryption of the Rabin encryption
scheme [44], whose semantic security may be based on the hardness of factoring.

References

1. J. Algesheimer, J. Camenisch, and V. Shoup. Efficient Computation Modulo a
Shared Secret with Application to the Generation of Shared Safe-Prime Products.
Crypto 2002.

2. D. Beaver and S. Haber. Cryptographic Protocols Provably Secure Against Dy-
namic Adversaries. Eurocrypt ’92.

3. M. Bellare and P. Rogaway. The Exact Security of Digital Signatures — How to
Sign with RSA and Rabin. Eurocrypt ’96.

4. S.R. Blackburn. Combinatorics and Threshold Cryptography. In Combinatorial
Designs and their Applications, F.C. Holroyd, et al., eds., CRC Press, 1999.

5. D. Boneh and M. Franklin. Efficient Generation of Shared RSA Keys. Crypto ’97.
6. C. Boyd. Digital Multisignatures. In H. Baker and F. Piper, eds., Cryptography
and Coding, Clarendon Press, 1989.

7. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively Secure Multi-Party
Computation. STOC ’96.

8. R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive Security
for Threshold Cryptosystems. Crypto ’99.

9. R. Canetti and S. Goldwasser. An Efficient Threshold Public-Key Cryptosystem
Secure Against Adaptive Chosen Ciphertext Attack. Eurocrypt ’99.

Threshold Cryptosystems Based on Factoring 205

10. D. Catalano, R. Gennaro, and S. Halevi. Computing Inverses over a Shared Secret
Modulus. Eurocrypt 2000.

11. D. Chaum and T. Pedersen. Wallet Databases and Observers. Crypto ’92.
12. J.S. Coron. Security Proof for Partial-Domain Hash Signature Schemes. Crypto

2002.
13. R. Cramer, I. Damg̊ard, and J.B. Nielson. Multiparty Computation from Threshold

Homomorphic Encryption. Eurocrypt 2001.
14. I. Damg̊ard and M. Jurik. A Generalization, a Simplification, and Some Applica-

tions of Paillier’s Probabilistic Public-Key System. PKC 2001.
15. I. Damg̊ard and M. Koprowski. Practical Threshold RSA Signatures without a

Trusted Dealer. Eurocrypt 2001.
16. A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to Share a Function

Securely. STOC ’94.
17. Y. Desmedt. Society and Group-Oriented Cryptography: A New Concept. Crypto

’87.
18. Y. Desmedt and Y. Frankel. Threshold Cryptosystems. Crypto ’89.
19. Y. Desmedt and Y. Frankel. Shared Generation of Authenticators and Signatures.

Crypto ’91.
20. P.-A. Fouque, and D. Pointcheval, Threshold Cryptosystems Secure against

Chosen-Ciphertext Attacks. Asiacrypt 2001.
21. P.-A. Fouque, G. Poupard, and J. Stern. Sharing Decryption in the Context of

Voting or Lotteries. Financial Cryptography, 2000.
22. P.-A. Fouque and J. Stern. Fully Distributed Threshold RSA under Standard As-

sumptions. Asiacrypt 2001.
23. Y. Frankel. A Practical Protocol for Large Group-Oriented Networks. Eurocrypt

’89.
24. Y. Frankel, P. Gemmell, and M. Yung. Witness-Based Cryptographic Program

Checking and Robust Function Sharing. STOC ’96.
25. Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung. Proactive RSA. Crypto ’97.
26. Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung. Optimal-Resilience Proactive

Public-Key Cryptography. FOCS ’97.
27. Y. Frankel, P. MacKenzie, and M. Yung. Robust Efficient Distributed RSA Key

Generation. STOC ’98.
28. Y. Frankel, P. MacKenzie, and M. Yung. Adaptively-Secure Distributed Public-

Key Systems. European Symposium on Algorithms ’99.
29. M. Franklin and S. Haber. Joint Encryption and Message-Efficient Secure Compu-

tation. J. Crypto 9(4): 217–232 (1996).
30. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust Threshold DSS Sig-

natures. Eurocrypt ’96.
31. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and Efficient Sharing

of RSA Functions. J. Crypto 13(2): 273–300 (2000).
32. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Distributed Key Gen-

eration for Discrete-Log-Based Cryptosystems. Eurocrypt ’99.
33. O. Goldreich, S. Micali, and A. Wigderson. How to Play any Mental Game. STOC

’87.
34. S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS 28(2): 270–299 (1984).
35. A. Herzberg, M. Jakobsson, S, Jarecki, H. Krawczyk, and M. Yung. Proactive

Public Key and Signature Systems. CCCS ’97.
36. S. Jarecki and A. Lysyanskaya, Adaptively Secure Threshold Cryptography: Intro-

ducing Concurrency, Removing Erasures. Eurocrypt 2000.

206 J. Katz and M. Yung

37. J. Katz, S. Myers, and R. Ostrovsky. Cryptographic Counters and Applications to
Electronic Voting. Eurocrypt 2001.

38. E. Kushilevitz and R. Ostrovsky. Replication is not Needed: Single Database
Computationally-Private Information Retrieval. FOCS ’97.

39. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryp-
tography, CRC Press, 1999.

40. M. Naor and M. Yung. Public-key Cryptosystems Provably Secure Against Chosen
Ciphertext Attacks. STOC ’90.

41. R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. PODC ’91.
42. P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes. Eurocrypt ’99.
43. T. P. Pedersen. A Threshold Cryptosystem Without a Trusted Party. Eurocrypt

’91.
44. M. O. Rabin. Digital Signatures and Public Key Functions as Intractable as Fac-

toring. Technical Memo TM-212, Lab. for Computer Science, MIT, 1979.
45. T. Rabin. A Simplified Approach to Threshold and Proactive RSA. Crypto ’98.
46. V. Shoup. Practical Threshold Signatures. Eurocrypt 2000.
47. V. Shoup and R. Gennaro. Securing Threshold Cryptosystems Against Chosen

Ciphertext Attack. Eurocrypt ’98.

A Proof of Equality for GM Ciphertexts

Input: Blum integers N1, N2 and X1, X2 where:
{X1 = (−1)

bx2
1 mod N1, X2 = (−1)

bx2
2 mod N2} with xj ∈ Z

∗

Nj
and b ∈ {0, 1}.

Repeat k times:

1. The prover chooses a random bit c and “twin encrypts” it; i.e.,
{V1 = (−1)

cv21 mod N1, V2 = (−1
)cv22 mod N2} for random vj ∈ Z

∗

Nj
.

The prover sends V1, V2.
2. The verifier chooses a challenge bit d and sends it.
3. The prover responds by sending:
{m1 = v1x

d
1 mod N1,m2 = v2x

d
2 mod N2}

4. The verifier checks that there exists a bit a such that both:
m2

1 = (−1)
a · V1 ·X

d
1 mod N1 and m

2
2 = (−1)

a · V2 ·X
d
2 mod N2

The verifier accepts only if the checks succeed in all iterations.

Fig. 4. Proof of knowledge of “twin” GM-encryption

The above proof system is complete and sound; furthermore, it is easy to
show that it is an honest-verifier zero-knowledge proof of knowledge (in fact, it
remains honest-verifier zero-knowledge when the k iterations are run in parallel).
To turn this to a non-interactive proof of knowledge in the random oracle model,
we can use the standard Fiat-Shamir technique.

