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Abstract. Several recently proposed ciphers, for example Rijndael and
Serpent, are built with layers of small S-boxes interconnected by linear
key-dependent layers. Their security relies on the fact, that the classical
methods of cryptanalysis (e.g. linear or differential attacks) are based on
probabilistic characteristics, which makes their security grow exponen-
tially with the number of rounds Nr.

In this paper we study the security of such ciphers under an additional
hypothesis: the S-box can be described by an overdefined system of al-
gebraic equations (true with probability 1). We show that this is true
for both Serpent (due to a small size of S-boxes) and Rijndael (due to
unexpected algebraic properties). We study general methods known for
solving overdefined systems of equations, such as XL from Eurocrypt’00,
and show their inefficiency. Then we introduce a new method called XSL
that uses the sparsity of the equations and their specific structure.

The XSL attack uses only relations true with probability 1, and thus the
security does not have to grow exponentially in the number of rounds.
XSL has a parameter P , and from our estimations is seems that P should
be a constant or grow very slowly with the number of rounds. The XSL
attack would then be polynomial (or subexponential) in Nr, with a huge
constant that is double-exponential in the size of the S-box. The exact
complexity of such attacks is not known due to the redundant equations.
Though the presented version of the XSL attack always gives always
more than the exhaustive search for Rijndael, it seems to (marginally)
break 256-bit Serpent. We suggest a new criterion for design of S-boxes in
block ciphers: they should not be describable by a system of polynomial
equations that is too small or too overdefined.
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equations, XL algorithm, Gröbner bases, sparse multivariate polynomials, Mul-
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1 Introduction

On October 2nd, 2000, NIST has selected Rijndael as the Advanced Encryption
Standard. Serpent was second in the number of votes [1].
In the famous paper from 1949, Claude E. Shannon states that breaking a good
cipher should require ”as much work as solving a system of simultaneous equa-
tions in a large number of unknowns of a complex type”, see [25]. This seemed
very easy to achieve so far, as solving systems of equations can become in-
tractable very easily. Though every cipher can be described in terms of solving
multivariate equations over GF (2), it does not mean that it can be broken. In [8]
the whole AES is represented by one single equation with 250 terms. Such a big
equation has undoubtedly no consequences whatsoever on the security of AES.
Recently however surprising attacks appeared in public key cryptography: the
cryptanalysis of Matsumoto-Imai cryptosystem [17] by Patarin and the attack
on the basic version of HFE cryptosystem by Courtois [6]. In these attacks the
security collapses suddenly after discovering the existence of additional multi-
variate equations, that are not obvious and have not been anticipated by the
designers. The subject of this paper is to see if such a weakness can compromise
the security of a block cipher. For example, we show that the cryptanalysis of
Rijndael and Serpent reduces to solving a big system of Multivariate Quadratic
equations (a.k.a. MQ problem). Unlike in [8], MQ is a problem already known in
cryptography that underlies the security of multivariate public key schemes such
as HFE [19]. In [22, 23] Shamir et al. show that though MQ is NP-hard, its com-
plexity drops substantially when the MQ becomes overdefined (more equations
than unknowns). 3. In this paper we show that if the MQ is sparse and have a
regular structure, it becomes even much easier. Such will be the MQ systems we
will write for Rijndael and Serpent ciphers.
Since the pioneering work of Luby-Rackoff [12], there were many developments
on the security of top-level schemes of block ciphers. The state of art in both
security proofs and generic attacks for Feistel ciphers can be found in [15] and
[18]. However, Rijndael is not a Feistel cipher and a more powerful theory has
been developed by Vaudenay [26], to make security proofs against a large class
of attacks including linear and differential cryptanalysis, for an arbitrary type
of cipher. From this theory Moriai and Vaudenay developed security proofs for
idealized versions of several AES candidates [27]. The outcome for Rijndael was
somewhat strange: the cipher should have ≥ 384 rounds in order to make sure
it was secure. Similar results were obtained for Serpent. Therefore, it is not
completely unreasonable to believe, that the structure of Rijndael and Serpent
could allow attacks with complexity growing slowly with the number of rounds.
In this paper, it seems that we have found such an attack. It depends however
more on algebraic properties of the S-boxes than on the structure of the cipher,
and potentially, it can probably be extended to any block cipher.
The paper is organized as follows: First we describe a general class of ciphers
that includes Rijndael and Serpent. Then we explore algebraic properties of
their S-boxes and show that they can be described by an overdefined system of

3 Solving MQ in the opposite case of underdefined systems, has been studied in [5].
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equations. Consequently, we formulate their cryptanalysis in terms of solving an
overdefined system of quadratic equations. Though the general XL attack fails,
we will present an improved method called XSL. It does not yet break Rijndael
or Serpent but it gives definite conclusions about the design of block ciphers.

2 Substitution-Affine Ciphers, Rijndael and Serpent

According to Shannon’s paradigm [25], a cipher is combination of some confusion
and diffusion components. For example, SP-networks [7, 10] are combinations of
S-boxes with permutations of bits. More generally, we may allow linear or affine
functions of bits, not only permutations of wires. We will call it a SA-cipher. In
[21] Shamir and Biryukov study general top-level structural attacks against the
SA-ciphers. These attacks will not depend on particular S-boxes used.
In the present paper we use specific properties of the S-boxes. We specify a re-
stricted class of SA-ciphers called XSL-ciphers. Though our attacks are designed
for XSL-ciphers, it is obvious that they can be easily extended to all SA-ciphers,
and even to other block ciphers (including Feistel ciphers), provided that they
use (only) somewhat ”bad” S-boxes and have a regular periodic structure.

2.1 XSL-ciphers and the Notations we Use

By definition, an XSL-cipher is a composition of Nr similar rounds:

X Before the first round, the input is XOR-ed with the key K0. Let i = 1.
S Then a layer of B bijective S-boxes, on s bits each, is applied in parallel.
L Then a linear diffusion layer is applied.
X The result is XOR-ed with another session key Ki.
.. If i = Nr, the final result is produced.

Otherwise i is incremented and the process goes to the step S.

We denote the key bits used in an XSL-cipher by the variablesKi j with i = 0..Nr

and j = 1..Bs. There are Nr + 1 session keys, K0 is the first and KNr
is the

last. The number of key bits before expansion is Hk, the number of key bits
after expansion is Ek, and the number of expanded key bits that are linearly
independent is Lk. If we pick some subset of Lk key variables Ki j that form a
basis, then we will denote by [Ki j ] a linear expression of this bit Ki j as a sum
of the other Kk l that are in the basis.
We call Xi j the jth bit of the input of ith round S-boxes layer, step S (taken
after the previous XOR with the session key X). We denote by Yi j the jth bit
of the input of the linear part L of ith round (taken after the S-box application
S). Similarly let Zi j be the jth bit of the output of the step L (before the next
key XORing step X). Consequently we will denote the plaintext by Z0 and the
ciphertext by XNr+1, however these are constants, not variables. To summarize
we have:

Step: X S L X . . . . . . S L X
Values: Z0 X1 Y1 Z1 X2 . . . XNr YNr ZNr XNr+1

With these notations we obtain Xi+1 j = Zi j ⊕Ki j for all i = 0..Nr.
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2.2 Top-level Structure of Rijndael

Rijndael specified in [4], is a special type of XSL-cipher with s = 8 and B =
4Nb. We will not give a full description of it, but will recall all the essential
facts when necessary. Rijndael has Nr = 10 . . . 14 rounds. The data in Rijndael
is represented as rectangular ”states” that are composed of Nb columns, each
having the size of 4 S-boxes (4s = 32 bits). We have either Nb = 4, 6 or 8, which
gives block sizes of 32Nb = 128, 192 and 256 bits respectively. The encryption
in Rijndael is performed as follows:

X The input sequence Z0 j is XOR-ed with the session key K0 j . Let i = 1.
S Then resulting sequence Xi j is transformed by B = 4Nb S-boxes on s = 8

bits each.
L Then resulting sequence Yi j is then subject to a composition of two linear

transformations. First we have a permutation of bytes called ShiftRow, then
four linear transformations MixColumn:GF (256)4 → GF (256)4 applied in
parallel for each of Nb columns.
If i = Nr (the last round) we have only ShiftRow, the MixColumn is omitted.

X Then resulting sequence Zi j is XOR-ed with another session key Ki pro-
ducing, either the ciphertext (if = Nr), or the process increments i and goes
to step S.

The (unexpanded) key length is Hk = 32Nk bits with Nk = 4, 6 or 8, thus again
128, 192 and 256 bits respectively. It is then expanded to Ek = (Nr + 1)Bs =
(Nr + 1)Nb · 32 bits.

2.3 Top-level Structure of Serpent

Serpent described in [1] is an XSL-cipher with s = 4, B = 32 and Nr = 32. The
block size is always 128 bits. The key length can be Hk = 128, 192 or 256 bits,
and is also expanded to Ek = (Nr + 1)Bs = 1056 bits.

3 S-boxes and Overdefined Algebraic Equations

The only non-linear part of XSL-ciphers are the S-boxes. Let the function F :
GF (2)s → GF (2)s be such an S-box, given an input x = (x1..xs) we obtain
an output y = (y1..ys) = F (x). In Rijndael and Serpent, like for all other
”good” block ciphers, the S-boxes are build with ”good” boolean functions.
Among the known criteria on cryptographically ”good” boolean functions, we
know that yi should have a high algebraic degree in the xi. However, this does
not assure that there is no other ”implicit” multivariate equations of the form
P (x1, . . . , xs, y1, . . . , ys) that are of low algebraic degree. We will show that for
Rijndael, and for Serpent, for very different reasons, a great number of such
equations exist. We are interested in the actual number r of such equations
P (x1, . . . , xs, y1, . . . , ys), being of low degree d, e.g. d ≤ 2. Unlike for ”explicit”
equations yi = f(x1, .., xs), this number r can be bigger than s. We are also
interested in the total number of monomials t that appear in these equations,
counted including the constant term. With these notations:
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• In general, t ≈
(

s
d

)

. If t¿
(

s
d

)

, we say that the equations are sparse.
• When r ≈ s, the equations give enough information about the S-box, and the
system will be sufficiently defined to yield about 1 solution x, given y = F (x).
Consequently, when r À s, the system is said to be overdefined.

3.1 Quality of S-boxes and Random S-boxes

When r is close to t, we may eliminate most of the terms by linear elimination,
and obtain simpler equations that are sparse and maybe even linear. For this
reason, it is possible to measure the quality of our system of equations by the
ratio t/r ≥ 1. If t/r is close to 1, the S-box is considered as ”bad”. From this point
of view, both overdefined systems (big r) and sparse systems (small t) will be
”bad”. Otherwise, if the system is not overdefined and not sparse, t/r ≈ O(sd−1),
and such an S-box will be ”good” (unless s is very small).We will see that the
actual contribution of the S-boxes to the complexity of the attacks described in

this paper is approximatively Γ = ((t− r)/s)
d(t−r)/se

. It is possible to show that
for a random S-box, the smallest value of Γ that can be achieved will be double-
exponential in s. However it will be still relatively small for Serpent (s = 4).
For different reasons, the Serpent and Rijndael S-boxes can both be described
by overdefined systems with quite a small Γ .

3.2 Overdefined Equations on the Serpent S-box

We show that 4-bit S-boxes always give an overdefined system of quadratic
equations. Consider a 16×37 matrix containing in each row the values of the t =
37 monomials {1, x1, .., x4, y1, .., y4, x1x2, .., x1y1, .., y3y4} for each of the 2s = 16
possible entries x = (x1, .., x4). The rank of this matrix is at most 16, therefore
whatever is the S-box, there will be at least r ≥ 37−16 = 21 quadratic equations.
This is a very overdefined system since 21À 4. We have t/r ≈ 1.75 and Γ =

((t− r)/s)
d(t−r)/se

= 28.0. We note that a smaller t/r would be achieved with
cubic equations on this S-box, but Γ would be much bigger then. It is also
possible to consider bi-affine equations. In this case we have t = 25 and r ≥
25− 16 = 9 which is still overdefined, it gives the same value of Γ = 28.0.

3.3 Overdefined Equations on the Rijndael S-box

For Rijndael we have s = 8. It is easy to see that with the method described
above in Section 3.2, a random S-box on 8 bits will give r = 0 because 2s = 256
is bigger than the number 137 of possible quadratic terms. We see that s = 8
is quite big compared to Serpent: there are (28)! ≈ 21684 bijective S-boxes on
8 bits, compared with only (24)! ≈ 244 for s = 4. We don’t expect any useful
properties to happen by chance. Still, the design of the Rijndael S-box induces
a lot of algebraic structure, see [4, 2]. This yields very special properties.
Rijndael S-box is a composition of the ”patched” inverse in GF(256) with 0
mapped on itself, with a multivariate affine transformation GF (2)8 → GF (2)8.
Following [4] we call these functions g and f respectively, and denote S = f ◦ g.
Let x be an input value and y = g(x) the corresponding output value. We also
note z = S(x) = f(g(x)) = f(y). According to the definition of the S-box:

∀x 6= 0 1 = xy
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This equation gives, in turn, 8 multivariate bi-linear equations in 8 variables and
this leads to 8 bi-affine equations between the xi and the zj . It is possible to see
that 7 of these equations are true with probability 1, and the 8th is true with
probability 255/256. The existence of these equations for g and S is obvious.
Surprisingly, much more such equations exist. For example we have:

x = y ∗ x2

Since x 7→ x2 is linear, if written as a set of 8 multivariate functions, the above
equation gives 8 bi-affine equations between the xi and the yj , and, in turn,
between the xi and the zj . Adding the fact that the above equation is symmetric
with respect to the exchange of x and y, we get 16 bi-affine equations true with
probability 1 between the xi and the zj .

From the above we have 23 quadratic equations between xi and the zj that are
true with probability 1. We have explicitly computed these equations (see the
extended version of this paper), verified that they are all linearly independent,
and also that there are no more such bi-affine equations4. The number of terms
present in these equations is t = 81. These terms are: {1, x1, . . . , x8, z1, . . . , z8,
x1z1, . . . , x8z8}, and there is no terms xixj or zizj . We get t/r ≈ 3.52 and
Γ ≈ 222.9, much more than for Serpent.

An additional 24th equation: We observe that in Rijndael S-box, if x is
always different than 0, there 24 linearly independent quadratic equations. For
one S-box, the probability of this 24th equation to be true is 255/256. We are
interested in probability that it is true for all S-boxes in the execution of Rijndael
(i.e. we have x 6= 0 everywhere). As it has been already pointed out by the
authors of [8], this probability is quite big. It is in fact:

(255/256)
4·NbNr+4·d Nb(Nr+1)−Nk

Nk
e+4·1Nk=8·d Nb(Nr+1)−Nk−4

Nk
e

This gives between 1/2 for the smallest Rijndael 128 bits and about 1/9 for the
biggest 256-bit version. Therefore, if an attack works better with 24 equations,
and uses only one (or two) executions of the cipher it will be interesting to use
r = 24 and repeat the whole attack a few times. Otherwise, we use r = 23.

Fully quadratic equations: It is possible to see that if we consider fully
quadratic equations, not only bi-affine, for each S-box of Rijndael there are
r = 39 quadratic equations with t = 137. The additional 16 equations come
from the following two equations:

{

x4y = x3

y4x = y3

However, when r = 39, t = 137, we have Γ ≈ 247.0 instead of 222.9 and we always
obtained worse results in our attacks, than with r = 23, t = 81,

4 If we square the equation x = x2
∗ y we obtain successively x2 = x4

∗ y2, . . . , x128 =
x ∗ y128. It can be seen that each of them also gives 8 bi-affine equations. However,
since the square is multivariate linear, each of them produces the same 8 equations,
modulo a linear combination.
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About inverse-based S-boxes: In general, it is easy to see that if the S-box
on s bits is an affine transformation of the inverse function in GF (2s), then it
will give 3s − 1 bi-affine equations true with probability 1, and one additional
equation true with probability 1− 1

2s . We conjecture for all s there are no more
such equations (we verified this for several s). Up till now, it seemed a very
good idea to use such S-boxes: the inverse function (and its affine equivalents)
has meaningful optimality results with regard to linear, differential and high-
order differential attacks, see [2, 16]. However in our computer simulations, done
for many permutations including all the possible powers in GF (2s), the inverse
(and its equivalents) was always the worse in terms of the number of such
bi-affine equations. It is an open problem to find any other non-linear function
GF (2s)→ GF (2s) that admits so many equations, for some s > 0. Therefore, we
do not advocate to use such S-boxes even if they are probably still very secure.

Related work: The equations we have found for the Rijndael S-box are ex-
actly of the same type and of very similar origin, as the equations that Jacques
Patarin have discovered in 1988 for the Matsumoto-Imai cryptosystem [17]. The
existence of such equations for Rijndael S-boxes have been first discovered (but
not published) by Courtois, Goubin and Patarin, as soon as Rijndael have been
proposed as AES in 2000. Recently, in [14], Murphy and Robshaw pointed out
that it is more interesting to manipulate equations over GF (256). It leads to
systems that are identical (or very similar) in terms of the number of equations
and number of variables involved. However, the number of different monomials
t present is lower, which is expected to give better results for our attacks.

4 MQ attacks on Block Ciphers

Given an SA-cipher with S-boxes that can be described in terms of some algebraic
equations, recovering the key can be written as a problem of solving a system of
such equations. If these equations are multivariate quadratic, we call this ”the
MQ attack”. Such equations exist for Rijndael and Serpent, as shown above in
Sections 3.3 and 3.2, respectively.

4.1 Attack Scenarios

There are many ways in which the MQ attack can be applied. The system of
equations should be constructed in such a way that it has exactly one solution.
A system that has one solution on average is sufficient in practice, and if there
are a few solutions, prior to the solving stage, we would guess and fix a few bits.

First (general) attack ignoring the key schedule. This attack is designed
for any XSL-cipher, whatever is the key schedule. For simplification we only
consider the known plaintext attack. There are (Nr + 1) keys Ki that are of
the same size as a plaintext, and we need enough equations to determine them
uniquely. Hence we need (Nr +1) known plaintexts. This attack scenario will be
used in Section 6.
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Second (specific) attack using the key schedule. This attack is less gen-
eral and relies on the fact that the key schedules in Rijndael and Serpent are
very similar to the ciphers themselves: they use a combination of affine trans-
formations and (the same) S-boxes. Due to the lack of space, we only study the
first (more general) scenario and the second will be studied in a separate paper.

Stronger attack scenarios. If attacks based on MQ are possible, i.e. there
are efficient methods to solve quadratic equations, then they allow to attack
block ciphers in very strong scenarios. For example ciphertext-only attacks will
be possible if the attacker is able to characterize the redundancy of the plaintext
in terms of quadratic equations.

4.2 Direct MQ Attack on Rijndael and Serpent:

It can be seen that in the second attack scenario, the problem of recovering
the key of the 128-bit Rijndael, amounts to solving a system of 8000 quadratic
equations with 1600 variables. See Appendix A for details. Similarly, the 128-bit
Serpent would give a system of (Nr + 1)Br + NrBr = 43680 equations with
(Nr + 1)Bs+ (Nr − 1)Bs = 8192 variables.
In the remaining part of the paper we study solving such (and similar) systems
of equations. Our results are given in Sections 5.2 and 7.

5 Generic Methods for Solving Multivariate Quadratic

Equations

MQ is known to be an NP-hard problem [23]. Several public key cryptosystems
are based on MQ, for example HFE [19]. However, little is known about the
actual hardness of MQ in practice. From the above it is clear that if this problem
was very easy for 1600 variables, then Rijndael would be broken. With current
attacks, factoring a 1600-bit RSA modulus provides a security level slightly lower
than 2128 [24]. Therefore, MQ should be at least as hard as factoring.

5.1 Solving MQ with the XL Algorithm

In [22] Shamir and Kipnis made an important discovery about the MQ problem:
solving it should be much easier for overdefined systems 5. This idea has been
developed and consolidated in [23]. An algorithm called XL is developed for
this problem. It seems that for a random system of quadratic equations over
GF (2) (or one that looks random) that has a unique solution, the XL method
should always work (but maybe not for some very special systems). In [13] T.T.
Moh states that ”From the theory of Hilbert-Serre, we may deduce that the
XL program will work for many interesting cases for D large enough”. From
[23] it appears that XL would be polynomial for very overdefined systems, and
it seems that a variant of XL might even be subexponential in general (not
only for overdefined systems). However, very little is known about the actual
behaviour of XL for very big systems of equations and one can only talk about
conjectured complexities.
5 In this paper we will show that if the MQ is sparse, it is even much easier to solve.
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5.2 First Attempt to Cryptanalyse Rijndael with XL

For the 128-bit Rijndael with 128-bit key, following the Theorem A.3.1, we get a
system of m = 8000 equations with n = 1600 variables. Following the complexity
evaluation of XL from [23], the complexity would be about

(

n
n/

√
m

)ω
≈ 2330,

assuming ω = 2.376, the best known Gaussian reduction exponent, see [3].
This attack fails because for a random system of quadratic Rini = m = 8000
equations with n = 1600 variables, we have about Tini ≈ n2/2 ≈ 220 terms.
This gives Rini/Tini ≈ 2−7.3 that is very small and the XL algorithm has to do
extensive work in order to achieve an expanded system with R/T ≈ 1. It is easy
to see that in our whole system Tini ≈ (8 ·32+8 ·32+8+32+8)(Nr ·4 ·Nb) and
this gives only Rini/Tini ≈ 2−3.5. Therefore there should be a better attack. In
the next Section 6.2 we will write the quadratic equations in a different way in
order to achieve an even higher value of Rini/Tini.

6 XSL Attack on Block Ciphers

In this section we will write a system of equations that describe uniquely the
secret key of the cipher, following the first attack scenario from Section 4.1, that
does not depend on the key schedule. In order to solve these equations, we are
going to introduce an improved version of the XL approach from [23], that takes
advantage of their specific structure and sparsity. We call it ”the XSL algorithm”
where XSL stands for: ”eXtended Sparse Linearization” or ”multiply(X) by
Selected monomials and Linearize”. In the XL algorithm, we would multiply
each of the equations by all possible monomials of some degree D − 2, see [23].
Instead we will only multiply them by carefully selected monomials. It seems
that the best thing to do, is to use products of monomials, that already appear
in other equations.

6.1 Final Step and Working Condition of the XSL Attacks

In [23], when R ≥ T , we have as many equations as the number of terms that
appear in these equations and the big system is expected to be solved by adding
a new variable for each term, and solving a linear system (doing this is known
as linearization). There is no need to have R much bigger than T . because
obviously, the number of linearly independent equations (denoted later by Free,
cannot exceed T . In the original paper about XL [23], the system was solved
when T −Free was a small number. Still it is easy to see that both XL and XSL
algorithms can be extended to the case when T − Free is very big (!).
Let x1 be a variable, and let T ′ be the number of terms that can be multiplied by
x1 and still belong to the set of T terms. Now we assume that Free ≥ T −T ′+C
with a small C. We apply the following algorithm called ”the T ′ method”.

1. By one single gaussian elimination we bring the system to a form in which
each term is a known linear combination of the terms in T ′.

2. We do the same pre-computation two times, for example with T ′ defined for
x1 and separately for x2.
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3. In each of the two systems, we have a subsystem of C equations that contain
only terms of T ′. These new equations are probably not of the same kind
that the initial equations generated in XL-like attacks: only combining all
the equations one can obtain some information about the solution.

4. In each of the two subsystems of exceeding C equations, we multiply each
equation by x1 and x2, respectively. Then we substitute the expressions from
point 1 in these to get some other equations that contain only terms of T ′,
but for the other variable. These equations are expected to be new and
different. First because the equations from point 2 are believed to contain
”some information” about the solution, and moreover if we are over GF (2)
we will interact with the equation of the field GF(2) that is not necessarily
done elsewhere. We have done some computer simulations that show that
this heuristic works very well. See also Appendix B for an example.

5. Thus, if at the beginning Free ≥ C + T − T ′ we can ”grow” the number of
equations. For now we expect to up to 2C additional equations.

6. We expect that the number of new equations grows at exponential rate6.

7. If the initial system had a unique solution, we expect that we will end up
with Free = T or Free = T − 1.

8. For each equation containing only terms in T’, the cost to compute a derived
additional equation will be about T ′2. Since there are T ′ equations missing,
we expect to do about T ′3 additional operations in the attack, which can
probably be reduced to T ′ω and thus will be smaller than T ω.

9. If the whole attack fails one should try with another couple of variables in-
stead of x1 and x2, or use three variables from the start (and three systems).
We conjecture that three variables should always be sufficient. The number
of possibilities grows very fast with the number of variables, a new equation
obtained with one variable can be immediately transformed and expanded
with all the other variables.

For example, in our attack on Rijndael 256 bits given in Section 7.1, we have
T ≈ 2125 and T ′ ≈ 2114. The attack is expected to work as long as Free > T−T ′.

6.2 Core of the XSL Attacks

In this version of the XSL attack we assume that the system of equations for
each S-box is overdefined and r ≥ 2s. Let S be the total number of S-boxes in
our attack. Since we are going to use the most general attack scenario described
in 4.1 that ignores the key schedule of the cipher, we will have to consider Nr +1
executions of the cipher, see Section 4.1. S will be equal to

S = B ·Nr(Nr + 1).

Equations on the S-boxes and Their Multiples

Let A be an S-box of a XSL-cipher, called ”active S-box”. We write:

6 However, even if it grows by 1 each time, the attack will work as predicted.



Cryptanalysis of Block Ciphers with Overdefined Systems of Equations 277

0 =
∑

αijkXi jYi k +
∑

βijXi j +
∑

γijYi j + δ.

The total number of terms (i.e. all monomials including the constant) that appear
in these equations is small, only t (most of them of the form Xi jYi k). For this
reason (unlike in Appendix A) we use both the original variables Xi j and Yi k.
We will not use these equations directly, but we will, from these equations, and
separately for each S-box, choose some t − r terms as a basis, and write the
expression of each of the remaining r terms as a linear combination of the (r− t)
terms for the same S-box. We will choose a basis such that all the terms Xi j and
Yi j are not in the basis and such that 1 is in the basis. This is possible because
r ≥ 2s. Each time, in the attack we want to use one of the other r terms, we
will directly write them as the linear combination of the elements of the basis.
We define [Xi j ] and [Yi j ] as precisely these linear combinations of the (t − r)
elements of the basis.
Note: This can be called ”a compact version of the first XSL attack.” A different
approach is possible that uses all the t terms for each S-box (and later their
products). This gives different results and will be studied in a separate paper.

Products of Terms

The critical parameter of our attack will be P ∈ IN. We will manipulate products
of up to P terms that come from P different S-boxes. The total number of terms
used in the attack is about:

T ≈ (t− r)P ·

(

S

P

)

Moreover, we have (see the definition of T ′ given in Section 6.1 above):

T ′ ≈ t′(t− r)P−1 ·

(

S − 1

P − 1

)

with t′ < t being the number of terms in the basis for one S-box, that can be
multiplied by some fixed variable Xi j , and are still in the basis. For example
for Rijndael we use r = 23, t = 81, and get t′ = 9.

6.3 Equations on the Diffusion Layers

We will construct a set of equations in such a way that they can be multiplied
by many products of terms, and that all the resulting product can be written
using only the products of up to P terms, that are taken in the respective bases
we have chosen for P different S-boxes. We will get equations that are linear
combinations of the T monomials, as defined above. It seems that the best way
to attack our problem is to completely eliminate all the key variables and write
all possible equations of the form:

[Xi j ]⊕
∑

αj [Yi−1 j ] = [X ′
i j ]⊕

∑

αj [Y
′
i−1 j ] = [X ′′

i j ]⊕
∑

αj [Y
′′
i−1 j ] = . . .

The expressions [Xi j ] and [Yi j ] have been defined above, they are linear com-
binations of quadratic terms that are the elements of the basis.
We have Nr(Nr +1)(Bs) such equations. Each of these equations, called ”active
equation”, will be multiplied by products of terms for some (P − 1) ”passive”
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S-boxes. Here we need to exclude the terms for a few neighbouring S-boxes (i.e.
that have common variables with the active equation), it does not change a lot
the number of equations generated. The number of new equations is called R. It
is approximatively:

R ≈ Nr(Nr + 1)(Bs) · (t− r)P−1 ·

(

S

P − 1

)

≈ S · s (t− r)
P−1
·

(

S

P − 1

)

6.4 Expected Complexity of the XSL Attack

The goal of the attack is to obtain R > T − T ′. It gives:

Ss (t− r)
P−1

(

S

P − 1

)

> (t− r)
P

(

S

P

)

− t′ (t− r)
P−1

(

S − 1

P − 1

)

S2s

S − P + 1
>

(t− r)S

P
− t′

We will assume that P ¿ S (S is usually quite big) and thus S − P + 1 ≈ S.

s >
(t− r)

P
−

t′

S

s+
t′

S
>

(t− r)

P

We see that this condition can always be satisfied, if P is sufficiently big. We get
that:

P ≥
(t− r)

s+ t′

S

(#)

Note: From this it might seem that the XSL attack will work for r = 0, however
we have previously assumed that r ≥ 2s. Therefore r = 0 is not possible.

Let Tω, be the complexity of the Gaussian reduction, the complexity of the
attack is about:

WF = Tω ≈ (t−r)ωP

(

S

P

)ω

≈ (t−r)ωP
(

B ·N2
r

)ωP
≈

(

t− r

s
·Bs ·N2

r

)ωP

Now let us apply the estimation (#). In practice the value t′

S will be very small,
and vanishes for big ciphers (big Nr or big B). Therefore we assume that P =
d t−r

s e+ o(1). It gives the following (rough) estimation of the complexity of the
XSL attack on block ciphers, again assuming that r ≥ 2s:

WF ≈

(

t− r

s

)ωd t−r
s e+o(1)

· (Bs ·N2
r )

ωd t−r
s e+o(1)

WF = Γω · (Block size)
ω t−r

s (Number of rounds)
2ω t−r

s

This is polynomial in the block size and the number of rounds. The constant
part depends on Γ that depends only on the parameters of the S-box used in
the cipher, and is in general double-exponential in s, see Section 3.1. For a given
cipher the constant part Γω in the complexity of XSL will be fixed (but usually
very, very big).
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6.5 Actual Complexity of the XSL Attacks

In the above derivation we assumed that all the equations in R are linearly
independent and this implies that for some fixed P the attack will always work
for any number of rounds. From our early simulations 7 it seems that the attack
works for many rounds and then it fails. Thus P would rather increase (but
slowly) with the number of rounds.
If P were constant, for a fixed S-box that have many overdefined equations, the
XSL attack will be polynomial in the number of rounds. Even if P grows slowly,
and XSL is subexponential, it would be already an important breakthrough,
as the complexity of the classical attacks on block ciphers, such as linear or
differential cryptanalysis, grows exponentially in the number of rounds (and so
does the number of required plaintexts).
In fact there is another way to see that there is a risk that the problem to break
Rijndael might be subexponential when the number of rounds grows. Indeed, in
this paper we show how to write Rijndael as an overdefined system of quadratic
equations, with size that is linear in Nr, see Appendix A. The problem of solving
such a system of quadratic equations over GF (2) might already be subexponen-
tial using the original XL algorithm from [23]. See Section A.4 for more comments
on this. Finally, our equations from Appendix A are also overdefined, sparse and
have a lot of structure, which also should help the attacker.

7 Consequences of the XSL Attack
7.1 Application to Rijndael

We consider the 128-bit Rijndael with 256 bit keys. We have Nb = 4, Nk =
8, Nr = 14, s = 8, r = 23, t = 81, t′ = 9, S = 3360, then for P = (t− r)/(s+ t′/S) =
8, computed following (#), we get T ≈ 2125, T ′ ≈ 2114, R ≈ 2125 with R

T−T ′ =
1.106. The result is:

Tω ≈ 2298

This version of the XSL attack fails also for other variants of AES. We expect
that much better results should be obtained with the combination of the second
XSL attack7, with equations over GF (256) as proposed by Murphy and Robshaw
[14]. It is not excluded that even AES-128 could be broken: for Nb = 4, Nk =
4, Nr = 10, s = 8, r = 24, t = 41, t′ = 4, S = 201, our early estimation gives that
for P = 3 we have T ≈ 236, T ′ ≈ 227, R ≈ 236, R′ ≈ 233, and R+R′

T−T ′ = 1.01. If this

attack worked as well as expected7, the resulting complexity would be T ω ≈ 287.

7.2 Application to Serpent

For 256-bit Serpent, we have Nr = 32, s = 4, r = 21, t = 37, t′ = 5, S = 33792.
Then for P = (t− r)/(s+ t′/S) = 5, we get T ≈ 288, T ′ = 274, R = 288, R

T−T ′ =
1.25. The result is:

Tω ≈ 2210

It seems that the XSL attack breaks 256 bit Serpent. Though it is obtained with
the fairly theoretical ω = 2.376 from [3], using Strassen’s exponent we still get
2245. It is however not proven that the attack will work as predicted for P = 5.
Though XSL attacks will probably always work for some P , we considered the
7 See, the second XSL attack, preliminary version, http://eprint.iacr.org/2002/044/.
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minimum value P for which R
T−T ′ ≥ 1. This condition is necessary, but probably

not sufficient. A small change (e.g. increase by 1 or 2) in P would lead to a
dramatic overload in the complexity, going beyond the exhaustive search.

7.3 Consequences for the Design of Block Ciphers

There are two complementary approaches in the block cipher design that could
be seen in the AES contest. Either a cipher is designed with a very small number
of rounds that are very complex (for example in DFC), or it has a large number
of rounds that are very simple (for example in Serpent). In [27] the authors warn
that: ”an attack against Serpent may hold for any set of (random) S-boxes”. It
seems that we have found such an attack and using many layers of very simple
S-boxes is maybe not such a very good idea. Still, a correct choice of parameters
will prevent the attacks.
For different reasons, the XSL attack is also applicable to all ciphers in which the
only non-linear part is the inverse function in GF (2s), with a small s. Therefore,
ciphers such as Rijndael and Camellia should either use s that is sufficiently
large, maybe s > 8, or consider different S-boxes. This last possibility should
give new optimal designs of S-boxes, not only close to optimal in terms of linear
and differential attacks, but also incorporating our new criterion, i.e. having a
big value of Γ , for example Γ > 232.
Even if the attacks of the present paper have not yet been tested on really big
examples, they are an important threat for ciphers such as Rijndael, Serpent
and Camellia. We propose that all block ciphers should apply the following
criterion (due originally to Shannon [25]): The attacker should not be able to
write a system of algebraic equations of simple type and of reasonable size, that
completely characterizes the secret key. It can be achieved if one uses at least a
few (relatively) big randomly generated S-boxes.

8 Conclusion

In this paper we point out an unexpected property of Rijndael and Serpent: they
can be described as a system of overdefined and sparse quadratic equations over
GF (2). It was known from [23] that solving such systems is easier if they are
overdefined, and the problem might even be subexponential (conjectured) for
small fields such as GF (2). It is therefore possible that the security of Rijndael
and Serpent would not grow exponentially with the number of rounds.
A direct application of the XL attack from Eurocrypt’00 is extremely inefficient.
Knowing that the equations are not only overdefined, but also sparse and struc-
tured, we have introduced a new method called XSL. If the XSL attack works
as well predicted, it might (marginally) break Serpent 256 bits. With equations
over GF(2) we do not get an efficient attack for AES. However a different version
of XSL combined with equations over GF(256) is expected to give much better
results. In order to prevent such attacks, we propose that at least a few S-boxes
in a cipher should not be described by a small system of overdefined multivariate
equations.
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A Direct MQ Attack on Rijndael

It is interesting to know how to describe Rijndael as a system of quadratic equa-
tions with a minimum number of variables and maximum number of equations.
We are in the second attack scenario with one or a few known plaintexts (see
Section 4.1).

A.1 Minimizing the Number of Variables for Rijndael

For each round i, we know that there are 4r · Nb quadratic equations between
the (Zi−1 j +Ki−1 j) and the (Zi k). They are of the following form:

0 =
∑

αijkZi−1 jZi k +
∑

αijk[Ki−1 j ]Zi k +
∑

βijZi j +
∑

βij [Ki j ] + γ.

Exception is made for the first round, for which the Z0 being known, they are
of the form:

0 =
∑

αij [K0 i]Z1 j +
∑

βiZ1 i +
∑

γi[K0 i] + δ.

Finally, for the last round, the XNr k will be expressed as a sum of the known
ciphertext ZNr+1 k and [KNr k], giving the equations of the form:

0 =
∑

αijZNr−1 i[KNr j ] +
∑

αij [KNr−1 i][KNr j ] +
∑

βiZNr−1 i+

+
∑

βi[KNr−1 i] +
∑

γi[KNr i] + δ.

In all we will get 4 · r ·Nr ·Nb quadratic equations over GF (2). The number of
variables Zi j is only 4s · (Nr − 1)Nb.
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A.2 Using the Key Schedule

We have: Xi+1 j = Zi j ⊕ [Ki j ] for all i = 0..Nr. (1)

In order to define what are the [Ki j ] we need to choose a basis for the Ki j . From
the key schedule [4] it is obvious that one may take as ”true key variables” all the
Nk variables from the first round, then all the first columns of each consecutive
key states, and if Nk = 8, also the 5th columns. By inspection we see that the
number of ”true key variables” is:

Lk =

{

32 · (Nk + d(Nr ·Nb +Nb −Nk)/Nke) if Nk 6= 8

32 · (Nk + d(Nr ·Nb +Nb −Nk)/4e) if Nk = 8

For example, for 128-bit Rijndael with Hk = 128 we have Lk = 32·(4+10) = 448.

Additional equations. We call ”redundant true variables” all the Lk − Hk

additional variables that are determined by some initial subset ofHk unexpanded
variables. From the key schedule we see that for each of these Lk−Hk ”redundant
true variables” we may write r = 23 (or 24) quadratic equations. Each of the
”redundant true” key state columns is a XOR of one the previous columns, a
parallel application of 4 S-boxes to another column, and of a constant. Thus
these equations are of the form:

∑

αijkl[Ki j ][Kk l] +
∑

βij [Ki j ] + γ. (2)

The number of these equations is:

r ·
Lk −Hk

s

A.3 Summary of the Equations and Concrete Applications

Theorem A.3.1 (Reduction Rijndael → MQ). The problem of recover-
ing the secret key of Rijndael given about one pair plaintext/ciphertext can be
written as an overdefined system of

m = 4 · r ·Nb ·Nr + r(Lk −Hk)/s

sparse quadratic equations with the number of unknowns being:

n = 4 · s · (Nr − 1)Nb + Lk.

Concrete application to Rijndael: We will use fully quadratic equations
obtained in Section 3.3. We have r = 39 and t = 137, however since this attack
will only require 1 or 2 known plaintexts, we may assume r = 40 (see Section
3.3).
• Thus for the 128-bit Rijndael with 128-bit key, we can write the problem of
recovering the key as a system of 8000 quadratic equations with 1600 variables.
• For the 256-bit Rijndael with 256-bit key, we get a system of 22400 quadratic
equations with 4480 variables.
In general, no efficient algorithms are known to solve such big systems of equa-
tions. In fact however, they are sparse and have regular structure, see Section
5.2. In Section 6.2 we write quadratic equations in a different way, more suitable
for our the XSL attacks.
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A.4 Theoretical Consequences for Rijndael and AES

The above reduction has already some very important consequences for Rijndael
and AES. We consider the security of some generalized version of Rijndael in
which the number of rounds Nr increases and all the other parameters are fixed.

On one hand, in all general attacks previously known against such ciphers, for
example in linear or differential attacks, the security grows exponentially with
Nr. There are also combinatorial attacks such as square attack, but these will
simply not work if Nr is sufficiently large. On the other hand, we observe that
the number of variables (and the number of equations) in the reduction is linear
in the number of rounds Nr. Therefore, if the MQ problem is subexponential,
which seems possible from the XL paper [23], to break Rijndael would also be
subexponential8, i.e. the security would not grow exponentially with the number
of rounds Nr.

Remark 1: It is important to see that the result would not be the same if the
reduction were for example quadratic in Nr. In this case XL could be subexpo-
nential, for example in n

√
n but the Rijndael could still be fully exponential, for

example in (N2
r )

Nr .

Remark 2: It seems that the same remark will hold for any block cipher com-
posed with rounds of fixed type: obviously each of them can always be written
as a set of quadratic equations. However, in this case, the size of the system
(even for one round) will be so huge that there will be no hope for any practical
attacks.

B A Toy Example for the ”T ′ method”

This is a concrete working example for the final step of the XSL algorithm called
the ”T ′ method”. It can also be applied to the XL algorithm.

We have n = 5 variables, and thus T = 16 and T ′ = 10. We start with a
random system that has exactly one solution, and with Free > T −T ′ and with
2 exceeding equations, i.e. Free = T − T ′ + 2. Here is a system in which T ′ is
defined with respect to x1:











































x3x2 = x1x3 + x2

x3x4 = x1x4 + x1x5 + x5

x3x5 = x1x5 + x4 + 1
x2x4 = x1x3 + x1x5 + 1
x2x5 = x1x3 + x1x2 + x3 + x4

x4x5 = x1x2 + x1x5 + x2 + 1
0 = x1x3 + x1x4 + x1 + x5

1 = x1x4 + x1x5 + x1 + x5

Here is the same system in which T ′ is defined with respect to x2:

8 It also possible that XL is subexponential only on average, and AES gives very
special systems.
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x1x3 = x3x2 + x2

x1x4 = x3x2 + x2 + x1 + x5

x1x5 = x2x4 + x3x2 + x2 + 1
x3x5 = x2x4 + x3x2 + x2 + 1 + x4 + 1
x3x4 = x2x4 + x1 + 1
x4x5 = x1x2 + x2x4 + x3x2

0 = x1x2 + x2x5 + x3x2 + x2 + x3 + x4

0 = x2x4

We have rank = 8. Now multiply the two exceeding equations of the first version
of the system by x1.

{

0 = x1x3 + x1x4 + x1 + x1x5

0 = x1x4

We have rank = 10. We get two new linearly independent equations.
We rewrite these equations, using the second system, only with terms that can
be multiplied by x2. Now we have 4 exceeding equations for the second system
(two old and two new):











0 = x1x2 + x2x5 + x3x2 + x2 + x3 + x4

0 = x2x4

0 = x2x4 + x3x2 + x5 + x2 + 1
0 = x3x2 + x2 + x1 + x5

We multiply these four equations by x2.










0 = x1x2 + x2x5 + x2x4 + x2

0 = x2x4

0 = x2x4 + x3x2 + x5x2

0 = x3x2 + x2 + x1x2 + x2x5

We are not lucky, the second equation is invariant by this transformation. Still
we get three new linearly independent equations. We have rank = 13.
We rewrite, using the first system, the three new equations with terms that can
be multiplied by x1.

{

1 = x1x5 + x2 + x3 + x4

1 = x1x2 + x1x3 + x1x5 + x2 + x3 + x4

0 = x3 + x4

Still rank = 13. Then we multiply the three new equations by x1:
{

1 = x1x5 + x1x2 + x1x3 + x1x4

1 = x1x5 + x1x4

0 = x3 + x4

We have rank = 14. We get one more linearly independent equation. The two
other are redundant. Now we rewrite the first equation with terms that can be
multiplied by x2:

0 = x1x2 + x2x4 + x3x2 + x1 + x2 + x5

We have still rank = 14. Then we multiply the new equation by x2:

0 = x2x4 + x3x2 + x2x5 + x2

We get another new linearly independent equation. We have rank = 15. The
rank is the maximum that can be achieved, there are 15 non-zero monomials
here, and rank = 16 can only be achieved for a system that is contradictory.


