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Abstract. The generic group model has recently been used to prove the
security of certain asymmetric encryption and signature schemes. This
paper presents results that show that there exist problems in that are
provably hard in the generic group model but easy to solve whenever the
random encoding function is replaced with a specific encoding function
(or one drawn from a specific set of encoding functions). In particular
we show that there exist cryptographic schemes that are provably hard
in the generic group model but easy to break in practice.

1 Introduction

The complex nature of asymmetric encryption schemes makes it difficult to give
concrete assurances of their security. In order to prove results about their security
several models have been proposed. Each model makes some assumptions about
the properties of certain parts of the scheme.

The most popular of these is the random oracle model, which was introduced
by Bellare and Rogaway in 1993 [1]. It was designed to show the difficulty of
breaking cryptographic algorithms by modelling certain parts of the cipher (usu-
ally the hash functions) as random functions. Doubt was cast on the validity of
this model by Canetti, Goldreich and Halevi [3] who proved that there exists a
theoretical signature scheme that is secure in the random oracle model but inse-
cure when the random function is replaced by any polynomial time computable
function or set of functions.

The generic group model was proposed by Shoup [8] to give exact bounds on
the difficulty of the discrete logarithm problem and the Diffie-Hellman problem
in the situation where the attacker has no information about the specific repre-
sentation of the group being used. In other words the attacker is trying to solve
a discrete logarithm (or Diffie-Hellman) problem in a group isomorphic to Cp

but does not know whether this group is realised as, say, a multiplicative group
or as an elliptic curve group. We cast some doubt on the model by proposing
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a problem that is provably difficult in the generic group model but for which
there exists an attacker that can easily solve the problem for any representa-
tion of the group without using any properties of the special properties of that
representation.

More recently the generic group model has been used by Brown [2], Schnorr
and Jakobsson [7], and Smart [9] in the analysis of certain cryptographic proto-
cols based on the Diffie-Hellman problem. Our result shows that, in the analysis
of asymmetric primitives, the generic group model has the same weaknesses as
the random oracle model. In particular we show how a secure signature scheme
may be modified to give a scheme that is still secure in the generic group model
but insecure whenever any specific representation of the group is chosen.

This work is similar in its intent to the work of Fischlin [4] but our result
is an improvement. Fischlin shows that the security of the Schnorr signature
scheme [6] in the generic group model might depend upon the choice of hash
function used within the scheme. The paper shows that the scheme is weak in
the generic group model with one particular hash function and postulates that
the scheme is secure in the generic group model with a different hash function.
We improve upon this result and show that if there exists any signature scheme
that is secure in the generic group model then there exists a tweaked version of
that scheme that is still provably secure in the generic group model but insecure
in practice.

2 The Generic Group Model

Let p be a k-bit prime and let ZZp be the group of additive integers modulo p. Let
lout : IN → IN be a length function with lout(k) ≥ k and S = {0, 1}lout(k). Note
that it is possible to represent elements of ZZp as members of S. An encoding
function is a function σ : ZZp → S for which σ(x) = σ(y) if and only if x = y.

The most common examples of encoding functions include representing an
element x ∈ ZZp as:

– the bit representation of x in ZZp,
– the bit representation of gx in ZZm, where g has order p in ZZm,
– the bit representations of the co-ordinates of the elliptic curve point xP ,

where P is a point of order p on an elliptic curve E.

It is important to note that finding x given σ(x) and σ(1) is the same as solving
the discrete logarithm problem on the group.

A generic algorithm is a probabilistic, polynomial-time Turing machine M
that takes representations of group elements σ(x1), . . . , σ(xm) as inputs. As M
is executed it may compute group operations on group elements by way of an
addition oracle O : S × S × ZZ2 → S such that

O(σ(xi), σ(xj), b) = σ(xi + (−1)bxj) . (1)

We assume that any call to this oracle involves one evaluation of σ.
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We will denote a generic algorithm M with access to an encoding function
σ and a suitable addition/subtraction oracle by Mσ (we implicitly assume the
presence of an addition oracle whenever we have an oracle for the encoding
function). We define the result of running such an algorithm as x ← Mσ. This
differs from the original definition of [8] as our generic algorithm can calculate
σ(x) for any x ∈ ZZp without calculating any intermediate values. In particular
M can calculate σ(1).

This does not substantially change any of the results given in [8] because
even when it is not possible to calculate σ(x) directly, it is always possible to
calculate σ(x) using a polynomial number of queries to the addition oracle O.
The following is a result of Shoup [8].

Result 1. Let x ∈ ZZp and let σ be a randomly chosen encoding function of
ZZp into S. If Mσ is a generic algorithm for ZZp on S that makes at most m
evaluations of σ then the probability that x←Mσ(σ(x)) is O(m2/p). Note that
in particular if Mσ makes a number of evaluations of σ that is polynomial in k
then the probability that x←Mσ(σ(x)) is negligible.

3 Evasive Relations on Groups

The definition of an evasive relationship was introduced in [3] and we will con-
tinue to develop definitions and use proof techniques that that paper suggests.
The notion of evasive relations capture one difference between random functions
(a function chosen at random from all possible functions) and functions actually
used in practice (that must be calculatable).

Definition 1 (Evasive Relation). A relation R ⊆ {0, 1}∗ × {0, 1}lout(k) is
said to be evasive if for any probabilistic polynomial-time Turing machine M
with access to an oracle P we have

Pr[x←MP(1k), (x,P(x)) ∈ R]

is negligible in k, where the probability is taken uniformly over all choices of
oracle P : {0, 1}∗ → {0, 1}lout(k) and the coins of M .

We extend this definition so that it is applicable to the group setting.

Definition 2 (Evasive Group Relation). A relation R ⊆ G×S is said to be
an evasive group relation if for any probabilistic polynomial-time Turing machine
M we have

Pr[x←Mσ(1k), (x, σ(x)) ∈ R]

is negligible in k, where the probability is taken uniformly over all choices for an
encoding function σ : G→ S and the coins of M .

However, in the real world we will not be working with a random encoding
function but with a known computable function that is, at worst, chosen from
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some collection. For example we could be working in a subgroup of the mul-
tiplicative group of integers modulo a value or a subgroup of an elliptic curve
group with the points represented as either compressed, uncompressed or hybrid
bit-strings. We designate the collection of these possible encoding functions an
“encoding ensemble”.

Definition 3 (Encoding ensemble). We define an encoding ensemble F to
be a collection of encoding functions fs : ZZp → S where s ∈ {0, 1}k. (We
do not require that F contain exactly 2k functions, just that this is an upper
bound). We require that there exists a polynomial-time algorithm Eval such
that Eval(s, x) = fs(x) and a polynomial-time algorithm Add such that

Add(s, fs(xi), fs(xj), b) = fs(xi + (−1)bxj) . (2)

Once again we reiterate the fact that complete knowledge of an encoding
function fs and the encoding a group element fs(x) does not imply that it is
feasible to calculate x. This is the discrete logarithm problem and in general this
is hard. However, in general, it is not necessary to be able to invert an encoding
function in order to construct the Add function - all of the examples of encoding
functions given in Section 2 have efficient Add functions, even when the discrete
logarithm problem is thought to be hard for that representation.

We try to emulate the idea of evasive group relation when the randomly
chosen encoding function is replaced with a function chosen at random from an
encoding ensemble.

Definition 4 (Correlation intractability). Let F be an encoding ensemble
of ZZp into S. F is correlation intractable if for every probabilistic, polynomial-
time Turing machine M and every evasive group relation R we have that

Pr[s← {0, 1}k, x←M(s), (x, fs(x)) ∈ R]

is negligible in k, where the probability is taken over the uniformly random choice
of s and the coins of M .

A clear example of the difference between random encoding functions (an
encoding function drawn at random from all possible encoding functions) and
encoding ensembles (where the encoding function is drawn from a specific set)
is that there exists no encoding ensemble which is correlation intractable.

Lemma 1. There exist no correlation intractable encoding ensembles.

Proof. Let F be an encoding ensemble of ZZp into S and define the relation R
to be

R = {(s̄, fs(s̄)) : s ∈ {0, 1}
k} (3)

where s̄ = s (mod p). This is an evasive relation because for every x ∈ ZZp there
exists at most two y such that (x, y) ∈ R and so, for any x ∈ ZZp, we have that

Pr[(x, σ(x)) ∈ R] ≤
1

2lout(k)−1
≤

1

2k−1
(4)
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for a randomly chosen encoding function σ.
However if M(s) is the machine that returns s̄ then

Pr[s← {0, 1}k, s̄←M(s), (s̄, fs(s̄)) ∈ R] = 1 (5)

for any random choice of s ∈ {0, 1}k. So F is not a correlation intractable
encoding ensemble. ut

4 A Hard Problem with an Easy Solution

In this section we will examine a slightly modified version of the discrete loga-
rithm problem. We still attempt to solve the discrete logarithm problem in the
group ZZp as it is represented by the encoding function, however we now allow
the attacking machine to have access to certain oracles. We attempt to show that
whilst this problem is secure in the generic group model, it is insecure whenever
any specific encoding function or encoding ensemble is used.

4.1 A Modified Problem

For any evasive group relation R we define an oracle Dσ
R such that

Dσ
R(y, σ(x)) =

{

x if (y, σ(y)) ∈ R,
⊥ otherwise.

(6)

We still have that

Theorem 2. If Mσ,Dσ
R is a generic algorithm that makes at most a number of

queries to any oracle that is polynomial in n then

Pr[x←Mσ,Dσ
R(σ(x))]

is negligible, where the probability is taken over the uniform choice of encoding
function σ and the coins of M .

Proof. Obviously the oracleDσ
R does not affectM unless it is queried with a value

y such that (y, σ(y)) ∈ R). Since R is a group evasive relation this probability
is negligible, hence we may ignore the oracle Dσ

R. However in this case we may
appeal to Result 1, which proves that the probability of Mσ returning x without
the oracle Dσ

R is also negligible.
Formally we define E to be the event that the oracle Dσ

R is queried with
(y, z) such that (y, σ(y)) ∈ R and Ē be the complement of this event. So,

Pr[x←Mσ,Dσ
R(σ(x))] = Pr[x←Mσ,Dσ

R(σ(x))|E]Pr[E]
+Pr[x←Mσ,Dσ

R(σ(x))|Ē]Pr[Ē]
≤ Pr[E] + Pr[x←Mσ,Dσ

R(σ(x))|Ē]
(7)

and both of these terms are negligible, the latter by Result 1. ut
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This proves that the oracle Dσ
R has no effect on the problem in the generic

group model. Now consider the effects of this oracle when the random encoding
function σ is replaced by an encoding ensemble. (Or rather the function σ chosen
at random from all encoding functions is replaced with a function fs chosen at
random from the encoding ensemble F .) If we use the group evasive relation R
defined in (3) then the previously useless oracle Dσ

R now becomes

Ds
R(y, fs(x)) =

{

x if (y, fs(y)) ∈ R,
⊥ otherwise.

(8)

Of course now there exists a machine MDs
R(fs(x), s) that will output x with

probability 1 just by querying the oracle Ds
R with the query (s̄, fs(x)), where

s̄ ∈ ZZp and s̄ ≡ s mod p.

4.2 A Universal Encoding Ensemble

So far we have shown that for every encoding ensemble there exists an oracle
discrete logarithm problem that is provably difficult in the generic group model
but easy when the random encoding function is replaced by a specific given
encoding ensemble. We will now attempt to generalize this to an oracle discrete
logarithm problem that is hard in the generic group model but easy when the
random encoding function is replaced by any encoding ensemble. In order to do
this we will need to enumerate all possible encoding ensembles.

Recall that for any function ensemble F there exists a polynomial-time func-
tion Eval(s, x) that evaluates fs(x). We cannot enumerate all polynomial-time
functions as there is no single polynomial-time bound that they all obey, so in-
stead we enumerate all functions that run in time t(k) = klog k. We do this by
enumerating all algorithms and modifying each algorithm to force it to termi-
nate after t(k) steps. Note that this enumeration will include all polynomial-time
algorithms.

We denote the i-th encoding ensemble in this enumeration by F i and the
s-th member of that encoding ensemble by f is. We let U denote the universal
encoding ensemble given by

U(〈i, s〉, x) = f is(x) (9)

We remark that there exists a machine that computes U and runs in time t(k).
Now consider the relation R induced by U given by

R = {(x, y) : y = U(x, x̄)} ⊆ {0, 1}∗ × S (10)

where x̄ is the element of ZZp such that x̄ ≡ x mod p (i.e. (x, y) ∈ R if and only
if x = 〈i, s〉 and y = f is(x̄)). This relation is clearly evasive as for any x there
exists at most one value of y such that (x, y) ∈ R. Again we consider the oracle
Dσ
R such that

Dσ
R(y, σ(x)) =

{

x if (y, σ(y)) ∈ R,
⊥ otherwise.

(11)
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Now we may deduce the following two results in exactly the same way as
before but using the evasive relation R (which is slightly different to the evasive
group relation we used before).

Lemma 2. If Mσ,Dσ
R is a generic algorithm that make a polynomial number of

queries to any oracle then

Pr[x←Mσ,Dσ
R(σ(x))]

is negligible, where the probability is taken over the uniform choice of encoding
function σ and the coins of M .

Now we replace the random encoding function σ with the label describing the
encoding function, 〈i, s〉. It is important to replace σ with 〈i, s〉 exactly. Since
σ is an oracle that is available to both the attacker and the oracle DR we must
make sure that both the attacker and the oracle have access to a legitimate copy
of 〈i, s〉. It is easiest to think of 〈i, s〉 as a system parameter.

Lemma 3. There exists a Turing machine M that runs in time polynomial in
k such that

Pr[x←MD
〈i,s〉

R (f is(x), 〈i, s〉)] = 1 .

Proof. M queries D
〈i,s〉
R with the input (〈i, s〉, f is(x)) and then outputs the out-

put of the oracle. This can be done in polynomial time since we know f is is a
polynomial time encoding function. ut

5 Signature Schemes

The results in this paper have been phrased in terms of an oracle problem that
is provably hard in the generic group model. Some readers might dislike the
use of a very powerful oracle that only outputs useful information in a very
small number of cases. We have chosen to exhibit the results in the more general
sense of a problem but it should also be noted that the above results could have
been phrased in terms of a signature or encryption scheme. Here the oracle is
replaced by access to a signing oracle or a decryption oracle, which seems much
more natural.

5.1 A Signature Scheme that Runs in Super-Polynomial Time

Suppose (S,V) is a signature scheme secure against adaptive chosen message
attacks in the generic group model. We can modify the scheme so that it is still
secure in the generic group model but insecure when any encoding ensemble is
used instead of a random encoding function. Let S1 be the signing function given
by

Sσ1 (m, sk) =

{

sk||Sσ(m, sk) if (m,σ(m)) ∈ R,
Sσ(m, sk) if (m,σ(m)) /∈ R.

(12)
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where m is the message to be signed, sk is the secret key and R is the relation
given in equation 10. The corresponding verifying algorithm, V1 is given by

Vσ1 (m, s, pk) =







Vσ(m, s′, pk) if (m,σ(m)) ∈ R and s = x||s′

(where x is the same length as sk),
Vσ(m, s, pk) if (m,σ(m)) /∈ R.

(13)

wherem is the message, s is the signature and pk is the public key. The signature
scheme (S1,V1) is still secure against adaptive chosen message attacks in the
generic group model.

However we have already shown that once we replace the random encoding
function σ with an encoding function fs drawn at random from an encoding
ensemble F i then we can find a message m = 〈i, s〉 for which (m, f is(m)) ∈ R.
Hence we completely recover the secret key if we query the signing oracle withm.
So the scheme is insecure for any concrete instantiation of the encoding function,
i.e. the scheme is insecure in practice.

Unfortunately we are not quite finished: at the moment both the signing and
verifying algorithms run in time t(k) = O(klog k). This is because both algorithms
need to check a relation in R and then only way to check if (〈i′, s′〉, y) ∈ R is to
check if f i

′

s′(〈i
′, s′〉) = y, which may take super-polynomial time.

5.2 Running the Scheme in Polynomial Time

We will use the CS-proof techniques of Micali [5] to run this scheme in polynomial
time. Unlike [3] we cannot use guaranteed CS-proofs as we are unable to easily
construct independent random functions1, so we will instead use the notion of
a cryptographic CS-proof. For this we require that all parties have access to a
common random string r. Micali [5] shows that there exists polynomial-time
algorithms Pro and Ver such that

– if (x, σ(x)) ∈ R then Pro that computes a proof π to this fact,
– if (x, σ(x)) ∈ R and π is a proof to this fact then Ver verifies this proof,
– if (x, σ(x)) /∈ R then a polynomial-time adversary produces a proof π′ that

Ver accepts for only an exponentially small number of random strings r.

From the details of [5] we see that it is reasonable to assume that the last fact
goes even further: for any random string r it is computationally infeasible for a

1 Of course, we could allow all parties to have access to a random oracle and then use
the construction given in [3]. This would then allow us to prove that, in the random
oracle model, there exists a scheme that is secure in the generic group model but
insecure in any practical situation. Alternatively we could construct a scheme that
is secure in the combined random oracle/generic group model but insecure in the
standard model (i.e. when all random functions are replaced with functions drawn
from the relevant ensembles). Whilst this technique is used successfully in Schnorr
and Jakobsson [7] we feel that, in this particular situation, this is too much like
passing the buck!
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polynomial-time adversary to find a group element x and a proof π′ such that
(x, σ(x)) /∈ R but Ver accepts the proof.

So we may now define a new signature scheme (S2,V2) that is still secure
against adaptive chosen ciphertext attacks in the generic group model. Note
that any message m may be written as x||π where x is a group element, hence
we may define the signing function on a message m to be:

Sσ2 (m, sk) =







sk||Sσ(m, sk) if Ver verifies the proof π that
(x, σ(x)) ∈ R,

Sσ(m, sk) otherwise.
(14)

where sk is the secret key. The corresponding verifying function for a message
m and a proposed signature s is given by:

Vσ2 (m, s, pk) =















Vσ(m, s′, pk) if Ver verifies the proof π that
(x, σ(x)) ∈ R and s = x||s′ (where
x is the same length as sk),

Vσ(m, s, pk) otherwise.

(15)

This scheme is secure in the generic group model because it is computation-
ally infeasible to guess x such that (x, σ(x)) ∈ R and it is also computationally
infeasible to produce a proof π that will fool the signing oracle into believing
that (x, σ(x)) ∈ R. Furthermore, since Ver runs in polynomial-time, both the
signing and verifying functions run in polynomial-time.

However when the random encoding function is replaced by the encoding
function f is then an attacker could submit the message

m = 〈i, s〉 || Pro(x, r) (16)

to the signing oracle and the signing oracle will return the secret key. So the
scheme is insecure for any practical instantiation of the encoding function.

6 Conclusion

We have shown that the generic group model suffers from the same weaknesses
as the random oracle model, namely, that a problem can be shown to be hard in
the generic group model but is easy when the random function is changed to any
specific function or set of functions. This shows that the generic group model is
not a perfect way to represent an algorithm that attacks a problem defined on
a group but doesn’t take advantage of any of the specific group structure.

We have also adapted this to show that there are cryptographic schemes
that are secure in the generic group model that are insecure whenever a specific
encoding function is used. Heuristically this means that security proofs that rely
on the generic group model should be viewed with the same caution as security
proofs that rely on the random oracle model.
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