Salvaging Indifferentiability in a Multi-stage Setting

EUROCRYPT 2014, May 15th

Arno Mittelbach

The Real World

(Iterative) Hash Function Design

[Merkle-Damgård]

The Random Oracle

The Random Oracle allows you to replace all hash functions within your proof with a completely random function.

In the real world use a cryptographic hash construction.

Problem

How to gain more confidence in our scheme?

Minimizing Assumptions

Proof in the Random Oracle Model

Proof in the Real World

Minimizing Assumptions

Proof in the Random Oracle Model

Proof in something closer to Real World

Goal

Prove that domain extension (i.e. iteration scheme) cannot be attacked.

Indifferentiability

[MRH04, CDMP05]

Indifferentiability

Indifferentiability

 Reduce security of scheme G using indifferentiable hash construction H (with ideal compression function h) to scheme G using random oracle R.

Indifferentiable Hash Constructions

- Chop-MD
 - HMAC
 - NMAC
- Prefix-Free MD

. . . .

Enter: EUROCRYPT 2011

Indifferentiability: Not in Multi-Stage Settings

[RSS11]

Indifferentiability only works in Single-Stage Settings.

Restricted Communication

Indifferentiability: Not in Multi-Stage Settings

[RSS11]

Indifferentiability only works in Single-Stage Settings.

The Problem in a Nutshell

[CDMP05] Chop-MD is indifferentiable

The Problem in a Nutshell

Setting: Choose messages M_1, M_2 uniformly at random

Task: Jointly compute hash value of $M_1 || M_2$

Restriction: $x \ll M_1$

The Problem in a Nutshell

Setting: Choose messages M_1, M_2 uniformly at random

Task: Jointly compute hash value of $M_1 || M_2$

Restriction: $x \ll M_1$ Random Oracle value

"Plain"
Indifferentiability is
not sufficient to
achieve composition
in multi-stage
settings. [RSS11]

Can we strengthen indifferentiability?

Yes, but ...

- Impossible for domain extenders (iterated hash constructions) [DGHM13,LAMP12,BBM13]
- Even single-reset is impossible [BBM13]

[This Paper]

So what do we do?

Formalize iterated hash constructions

Formalize Problem

 Formalize joint property on game and hash constructions

Prove Composition

 Prove Property for interesting games and hash constructions.

Iterative Hash Functions

- The output of h is input to next h
- The final output is the output of h plus a simple transformation.
 - Identity
 - Projection
- Constants can be used
- Given M -> one can build an execution graph
- Given a graph -> one can extract M

The Problem in Multi-stage Settings

Formalize Bad Event

Formalize Bad Event

Fixing r induces a sequence of h-queries by adversaries.

Formalize Bad Event

Bad result: (m^*,x^*) is a bad result query, if $\operatorname{result}(m^*,x^*)$ relative to and but $\operatorname{\neg}\operatorname{chained}(m^*,x^*)$ relative to

Unsplittability

 Formalize joint property on game and hash constructions

A game G is UNSPLITTABLE for a hash construction H^h, if for every adversary there exists a simulator (an adapted adversary), such that

bad result queries occur only with negligible probability.

Composition

4

Prove Composition

 If game is UNSPLITTABLE for hash construction, then a random oracle can be replaced by that hash construction.

There exists a simulator S_1, S_2 such that

Composition

- If H^h is indifferentiable from a random oracle R there exists a simulator S for single stage settings
- From S build a canonical simulator S^*

non result queries \mapsto random result queries \mapsto consistent with random oracle

• Derandomize S^* using the random oracle [BG81]

Proof of Storage

5

- Prove Property for interesting games and hash constructions.
- RSS11 give proof-of-storage game as counterexample to general applicability of indifferentiability
- [this paper]: proof-of-storage is UNSPLITTABLE for any multi-round hash construction.

Three Two-stage Security Games

5

 Prove Property for interesting games and hash constructions.

CDA

$$b \leftarrow \{0, 1\}$$
$$(pk, sk) \leftarrow \mathsf{kgen}(1^{\lambda})$$

$$(\mathbf{m_0}, \mathbf{m_1}, \mathbf{r}) \leftarrow \mathcal{A}_1^h(1^{\lambda})$$

$$\mathbf{c} \leftarrow \mathcal{E}^{H^h}(pk, \mathbf{m_b}; \mathbf{r})$$

$$b' \leftarrow \mathcal{A}_2^h(pk,\mathbf{c})$$

return
$$(b = b')$$

MLE

$$P \leftarrow \mathcal{P}$$

$$b \leftarrow \{0, 1\}$$

$$(\mathbf{m}, \mathbf{m}, \mathbf{Z}) \leftarrow \mathbf{A}^{h_{1}}$$

$$(\mathbf{m_0}, \mathbf{m_1}, Z) \leftarrow \mathcal{A}_1^h(1^{\lambda})$$

$$\mathbf{c} \leftarrow \mathcal{E}_P^{H^h}(\mathcal{K}_P(\mathbf{m_b}), \mathbf{m_b})$$

$$b' \leftarrow \mathcal{A}_2^h(P, \mathbf{c}, Z)$$

return
$$(b = b')$$

UCE

$$b \leftarrow \{0,1\}; \ hk \leftarrow \mathsf{kgen}(1^\lambda)$$

$$L \leftarrow \mathcal{S}^{ ext{HASH}}(1^{\lambda})$$

$$b' \leftarrow \mathcal{D}(1^{\lambda}, hk, L)$$

return
$$(b = b')$$

if
$$T[x] = \bot$$
 then

if
$$b = 1$$
 then

$$T[x] \leftarrow H^h(hk, x)$$

else
$$T[x] \leftarrow \{0,1\}^{\ell}$$

return
$$T[x]$$

Theorem: If only last adversary gets hash keys used by game, then the game is UNSPLITTABLE for key-prefixed hash constructions.

Summary

- Unsplittability allows to use indifferentiability in a multistage setting.
- Interesting games and hash constructions can be shown to be unsplittable.
- Study of multi-stage games provides insights into hash function design: keyed-constructions, multi-round

Open Problems

- Sufficient conditions for unsplittability
- Ideal ciphers instead of compression functions
 - Block-cipher based compression functions
 - SHA-3 (Keccak)

Where we are – where to go

Here are a language and tools to work with indifferentiability in a multi-stage setting.

Of course there is sitll work:

- Ideal Cipher Model
 - SHA-3
- Conditions for Unsplittability

Indifferentiability: an Example

$$M \leftarrow \{0,1\}^p$$
 $st \leftarrow \mathcal{A}_1^R(M,1^{\lambda})$ $\mathbf{if} \; |st| > n \; \mathbf{then}$ $\mathbf{return} \; \mathbf{false}$ $C \leftarrow \{0,1\}^c$ $Z \leftarrow \mathcal{A}_2^R(st,C)$ $\mathbf{return} \; (Z = R(M\|C))$

