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McEliece Encryption Scheme

McEliece scheme

Secret Key : A generator matrix G ∈Mk×n(Fq) of a code C having
an efficient t–correcting algorithm ;

Public Key : G ′ := SGP , where S ∈ GL(k ,Fq) and P is an n × n
permutation matrix ;

Encryption : m ∈ Fk
q 7−→ y def

= mG ′ + e.

Decryption :
y 7−→ yP−1 = mSG + eP−1 7−→ mS 7−→ m.
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McEliece Encryption Scheme

Advantages and drawbacks

Advantages
Post Quantum ;
Efficient encryption and decryption (compared to RSA, El Gamal) :
For instance, the original McEliece has

encryption ≈ 5 times quicker than RSA 1024 (with public exponent 17)
decryption ≈ 150 times quicker than RSA 1024.

Drawbacks
Huge size of the keys : The original proposal (McEliece 1977) :
[1024, 524, 101]2 has a 67ko key (more than 500 times RSA 1024 for a
similar security).
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McEliece Encryption Scheme

Definition (Generalized Reed–Solomon Codes (GRS))

Let
x = (x1, . . . , xn) ∈ Fm

q with the xi ’s pairwise distinct.

y = (y1, . . . , yn) ∈ Fn
q, with the yi ’s nonzero.

GRSk(x , y)
def
= {(y1f (x1), . . . , ynf (xn)) | f ∈ Fq[x ], deg f < k}
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McEliece Encryption Scheme

GRS

Broken
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McEliece Encryption Scheme

Definition
Let x ∈ Fn

qm be a support and
Γ ∈ Fqm [x ]. The Goppa code
G (x ,Γ) is defined as

G (x ,Γ)
def
=

GRSdeg Γ(x , y)⊥ ∩ Fn
q.

and ∀i , yi = 1
Γ(xi )

.

GRS

Goppa

Broken

A. Couvreur, A. Otmani, J.-P. Tillich Attack on wild McEliece EUROCRYPT 2014 7 / 22



McEliece Encryption Scheme

Definition
Let x ∈ Fn

qm be a support and
Γ ∈ Fqm [x ]. The Goppa code
G (x ,Γ) is defined as

G (x ,Γ)
def
=

GRSdeg Γ(x , y)⊥ ∩ Fn
q.

and ∀i , yi = 1
Γ(xi )

.

GRS

Goppa

Broken

A. Couvreur, A. Otmani, J.-P. Tillich Attack on wild McEliece EUROCRYPT 2014 7 / 22



McEliece Encryption Scheme

Definition
When the Goppa polynomial Γ
is of the form Γ(z) = γ(z)q for
some squarefree γ ∈ Fqm [z ],
the Goppa code is said to be
wild.

Wild Goppa codes have
Better correction capacity
(Sugyiama et al. 1976)
hence provide a higher
security (Bernstein,
Lange, Peters, 2010)

GRS

Goppa

Goppa

 wild

Broken
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McEliece Encryption Scheme

GRS

Goppa

Goppa

 wild

Subfield

subcodes of GRS

Broken
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McEliece Encryption Scheme

GRS codes are proposed for
McEliece by Niederreiter
(1986).

Sidelnikov, Shestakov (1992)
give a key-recovery attack in
O(n3).

GRS

Goppa

Goppa

 wild

Subfield

subcodes of GRS

Broken Unbroken
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McEliece Encryption Scheme

Our contribution :
GRS

Goppa

Goppa

 wild

Subfield

subcodes of GRS

Broken Unbroken
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Square codes and distinguishers

Given two codes A ,B in Fn
q,

A ?B
def
= SpanFq {a ? b | a ∈ A , b ∈B} .

? denotes the component wise product : a ? b def
= (a1b1, . . . , anbn).

Proposition

dim(A ?A ) ¶ min

�

n,

�

dimA + 1

2

��

Theorem (Cascudo, Cramer, Mirandola, Zémor. (In progress))

Let A be a random code of length n and dimension k such that n >
�k+1

2

�

.

Then for all integer ℓ <
�k+1

2

�

Prob
�

dim(A ?A ) ¶

�

dimA + 1

2

�

− ℓ
�

= o(q−ℓ). (k → +∞)
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Square codes and distinguishers

Distinguisher on GRS codes

Theorem
Let x , y ∈ Fn

q be a support and a multiplier. Let k < n/2, then

GRSk(x , y)?2 = GRS2k−1(x , y ?2)

and hence :
dimGRSk(x , y)?2 = 2k − 1.

Application (Wieschebrink (2010))

An attack against Berger Loidreau proposal (2005) based on subcodes of
low codimension of GRS codes.
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Our attack

Our Attack

Public key : C : a Goppa code G (x , γq) over a quadratic extension
(m = 2).
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Our attack

Distinguisher by shortening

In general Goppa codes are not distinguishable by squares. But in the
specific case of wild Goppa Codes over a quadratic extension :

Theorem (C-, Otmani, Tillich 2014)

G (x , γq−1) shortened at a positions is distinguishable if
a ∈ {a− , . . . , a+} :

a− = n − 2r(q + 1)− 1

a+ = max

¨

a ¾ 0

�

�

�

�

�

3(n − a)− 4r(q + 1)− 2 ¶
min

¦

n − a,
�n−a−2r(q−1)+r(r−2)

2

�

©

«

Remark

The interval {a− , . . . , a+} is nonempty if :
when q ¾ 9 19 37 64

r > 2 3 4 5
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Our attack

The heart of our attack
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Our attack

The heart of our attack

We know
C0

def
= C ←→ Fq2 [x ]

C1 ←→ xFq2 [x ]

C1 is obtained by computing the words having some entry set to zero
(elementary linear algebra).

To compute C2 ←→ x2Fq2 [x ], notice that

C ? C2 ⊆ C1 ? C1.

Hence, C2 can be computed as the set of solutions z of
�

z ∈ C1
z ? C ⊆ C1 ? C1

.

A. Couvreur, A. Otmani, J.-P. Tillich Attack on wild McEliece EUROCRYPT 2014 18 / 22



Our attack

The heart of our attack

We know
C0

def
= C ←→ Fq2 [x ]

C1 ←→ xFq2 [x ]

C1 is obtained by computing the words having some entry set to zero
(elementary linear algebra).

To compute C2 ←→ x2Fq2 [x ], notice that

C ? C2 ⊆ C1 ? C1.

Hence, C2 can be computed as the set of solutions z of
�

z ∈ C1
z ? C ⊆ C1 ? C1

.

A. Couvreur, A. Otmani, J.-P. Tillich Attack on wild McEliece EUROCRYPT 2014 18 / 22



Our attack

The heart of our attack

We know
C0

def
= C ←→ Fq2 [x ]

C1 ←→ xFq2 [x ]

C1 is obtained by computing the words having some entry set to zero
(elementary linear algebra).

To compute C2 ←→ x2Fq2 [x ], notice that

C ? C2 ⊆ C1 ? C1.

Hence, C2 can be computed as the set of solutions z of
�

z ∈ C1
z ? C ⊆ C1 ? C1

.

A. Couvreur, A. Otmani, J.-P. Tillich Attack on wild McEliece EUROCRYPT 2014 18 / 22



Our attack

Our Attack

Step 1. Compute

C = C0

⊇ C1 ⊇ C2 ⊇ · · · ⊇ Cq+1

Step 2. From Cq+1, one can compute
x?(q+1) = (xq+1

0 , xq+1
1 , . . . , xq+1

n−1 ). (It uses the norm over Fq2 .)

Reapplying Step 1 and 2, one can also compute :
(x − 1)?(q+1) = ((x0 − 1)q+1, (x1 − 1)q+1, . . . , (xn−1 − 1)q+1)

Step 3. Deduce from x?(q+1) and (x − 1)?(q+1) the support x up to
Galois action.

Step 4. A bit more technique to deduce x and the Goppa Polynomial
γ.
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Our attack

Complexity and running times

Complexity : O(n4pn + n4(q2 − n)) (recall that n ¶ q2).

Table : Running times with an Intel R© Xeon 2.27GHz

[q,n, k , r ] [29,781, 516,5] ☣ [29, 791, 575, 4] ☣ [29,794,529,5] ☣
Average time 16min 19.5min 15.5min

(q,n, k , r) [31, 795, 563, 4] ☣ [31,813, 581,4] ☣ [31, 851, 619, 4] ☣
Average time 31.5min 31.5min 27.2min

(q,n, k , r) [32,841,601,4] ☣ [31, 900, 228, 14]
Average time 49.5min 24min

Proposed parameters (Bernstein, Lange, Peters 2010)
Never proposed parameters

(More than 2130 possible choices for γ and
security > 125 bits with respect to ISD)
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Our attack

Conclusion

We broke McEliece based on Wild Goppa codes G (x , γq−1) for
m = 2 ;

degγ s.t. :
when q ¾ 9 19 37 64

r > 2 3 4 5

It is the first polynomial time key-recovery attack against a family of
non trivial subfield subcodes of GRS codes.
From a distinguisher, we got an attack.
Question : are other distingushable codes breakable ? For instance high
rate Goppa codes (distinguisher on the dual).
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Our attack

Thank you for your attention.
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