Key Recovery Attacks on 3-Round Even-Mansour (with Applications!)

Itai Dinur, Orr Dunkelman, Nathan Keller, Adi Shamir

Computer Science Department University of Haifa

28th May, 2013

The Even-Mansour Block Cipher

- Suggested by Even and Mansour in 1991, as a generalization of DESX.
- Main idea: Take an unkeyed random permutation, *F*, and use pre-/postwhitening.

Block size: n bits, Key size: 2n bits.

$$\mathit{EM}^{\mathcal{F}}_{\mathit{K}_{1},\mathit{K}_{2}}(\mathit{P})=\mathcal{F}(\mathit{P}\oplus \mathit{K}_{1})\oplus \mathit{K}_{2}$$

EM Applications Double Triple Summary Scheme Security BigBang

Security of the Even-Mansour Scheme

- ► A simple attack that requires 2 plaintext/ciphertext pairs and 2ⁿ time.
- ► Moreover, there is a proof that any attack that uses D plaintext/ciphertext pairs, and T queries to F, has success rate of O(DT/2ⁿ).

EM Applications Double Triple Summary Scheme Security BigBang

Security of the Even-Mansour Scheme

- ► A simple attack that requires 2 plaintext/ciphertext pairs and 2ⁿ time.
- ► Moreover, there is a proof that any attack that uses D plaintext/ciphertext pairs, and T queries to F, has success rate of O(DT/2ⁿ).
- D92 a differential attack that matches the bound (offers the complete tradeoff) in chosen plaintext settings.
- BW00 a slide attack that matches the bound for $D = T = 2^{n/2}$ in known plaintext settings.
- DKS11 a SlideX attack that matches the bound (offers the complete tradeoff) in known plaintext settings.

The Big Bang of EM-Based Constructions

Triple

DKS11 Can we reduce the keying material? (answer: yes!)

Double

- G+11 LED: 8-Round Iterated EM (1-Key) or 12-Round Iterated EM (2-Key).
- B+12 Iterative EM shown to be indistinguishable in time $\Omega(2^{2n/3})$.
- B+12 Introduced AES² (=AES_{c2}(AES_{c1} ($m \oplus K_1$) $\oplus K_2$) $\oplus K_3$).
- LPS12 Improving [B+12] conjectures.

ΕM

Applications

- S12 3-Round EM indistinguishable in time $\Omega(2^{3n/4})$.
- A+13 Iterative EM shown to be indifferentiable.
- NWW13 Attacks on 2-Round 1-Key EM.
 - LS13 12-Round 1-Key iterated EM indifferentiable from ideal cipher.
 - G+13 Early versions of ZORRO (5-Round/3-Round Iterated EM).

BigBang

Results on LED

Reference	Cipher	Steps	Time	Data	Memory
[IS12]	LED-64	2	2 ⁵⁶	2 ⁸ CP	2 ¹¹
Our work	LED-64	3	2 ^{60.2}	2 ⁴⁹ KP	2 ⁶⁰
[IS12]	LED-128	4	2 ¹¹²	2 ¹⁶ CP	2 ¹⁹
[M+12]	LED-128	4	2 ⁹⁶	2 ⁶⁴ KP	2 ⁶⁴
[NWW13]	LED-128	4	2 ⁹⁶	2 ³² KP	2 ³²
[NWW13]	LED-128	6	2 ^{124.4}	2 ⁵⁹ KP	2 ⁵⁹
Our work	LED-128	6	2 ^{124.5}	2 ⁴⁵ KP	2 ⁶⁰
Our work	LED-128	8	2 ^{123.8}	2 ⁴⁹ KP	2 ⁶⁰

Note that the in LED, each step is a 4-round unkeyed permutation. We use the steps notations to avoid confusion, in which case, LED-64 has 8 steps, and LED-128 has 12 steps.

EM Applications Double Triple Summary
Results on AES²

- ► $AES^2 = AES_{c_1}(AES_{c_1}(m \oplus K_1) \oplus K_2) \oplus K_3).$
- A simple Meet-in-the-Middle attack exists (time complexity 2^{129.6} AES² evaluations, memory 2¹²⁸ memory cells).
- Our attack takes:
 - ► Data: 2^{125.4} chosen plaintexts
 - ► Time: 2^{126.8} (7-fold improvement)
 - Memory: 2^{125.4} (6-fold improvement)
- Attack is based on large entries in the difference distribution table of AES_{c1} (related to [M+12], assumes AES_{c1} is a random permutation).

2-Round 1-Key Even-Mansour

Double

Applications

Triple

- Let $P'_1(x) = x \oplus P_1(x)$ (a random function).
- XORing the input and output of P₁(x) with the same value K, does not alter the outcome of the feed forward!
- ▶ Hence, if v is a frequent image of P'_1 , then $\Pr[r_i = m_i \oplus v]$ is more frequent than other values.
- ▶ In other words, $P_2(m_i \oplus v) \oplus c_i$ is more likely to be K!

Our Attack (Variant of [NWW13])

Double

Applications

Triple

- Find optimal v (and its probability $(t/2^n)$)
- Collect enough known plaintexts (roughly $2^n/t$)
- ► For each of them assume that v "happened", obtain candidate K, and try it.

Complexity: Preprocessing $\lambda \cdot 2^n$ (with similar memory). Online data $O(2^n/t)$, online time $O(2^n/t)$, online memory 1.

EM	Applications	Double	Triple	Summary	
mprov	vements				

- We offer two improvements:
 - Picking the inputs in the preprocessing as part of some affine subspace, allows immediate discarding of wrong values.
 - Using several values for v's (needs more online storage, reduces data complexity).

EM	Applications	Double	Triple	Summary	
mpro\	vements				

- We offer two improvements:
 - Picking the inputs in the preprocessing as part of some affine subspace, allows immediate discarding of wrong values.
 - Using several values for v's (needs more online storage, reduces data complexity).
- ► For 64-bit block: 2^{60.4} time (including pre-processing), 2^{58.7} known plaintexts.
- Collecting many v's: 2^{60.1} time, 2⁴⁵ known plaintexts, and 2¹⁶ online memory.

3-Round 1-Key Even-Mansour

Main problem — we still need to "skip" one more permutation! 3-Round 1-Key Even-Mansour

Applications

Main problem — we still need to "skip" one more permutation!

Triple

Main solution — precompute P'₃, and use it to find the key.

3-Round 1-Key Even-Mansour — Preprocessing

Summarv

Triple

Preprocessing:

Applications

Double

- Find optimal v for $P'_1(x) = x \oplus P_1(x)$ (with probability $t/2^n$).
- ► Evaluate P'₃(x) on x's, and store the obtained values in a sorted list L₃ of P'₃(x) along with P₃(x).

3-Round 1-Key Even-Mansour — Online

Triple

Double

Summarv

Online:

Ask for many plaintexts

Applications

- For any plaintext, assume that v happened in $P'_1(x)$ (i.e., $r_i = m_i \oplus v$).
- Apply P₂(m_i ⊕ v), and check whether P₂(m_i ⊕ v) ⊕ c_i is in the list L₃.
- ▶ If so, obtain $P_3(x)$ from L_3 , and check the key $K = P_3(x) \oplus c_i$.

EM	Applications	Double	Triple	Summary
Jotim	izations			
Jotim	izations			

- As before we can add optimizations which reduce the need to check wrong keys, and reduce the data complexity.
- ► For 64-bit blocks: 2^{60.2} time (including pre-processing), 2⁴⁹ known plaintexts, and 2⁶⁰ memory.

EM Applications Double Triple Summary Summary & Conclusions

- Introduced new attacks on 2-round Even-Mansour (1-key/independent keys)
- ▶ Introduced new attacks on 3-round Even-Mansour (1-key)
- First attack on the full AES² (7-times faster than exhaustive search)
- Breaking 3/8 steps of LED-64
- Breaking 8/12 steps of LED-128 (improved from 6/12, with reduced complexities!)
- Better understanding of iterated Even-Mansour

Summary & Conclusions

- Introduced new attacks on 2-round Even-Mansour (1-key/independent keys)
- ▶ Introduced new attacks on 3-round Even-Mansour (1-key)
- First attack on the full AES² (7-times faster than exhaustive search)
- Breaking 3/8 steps of LED-64
- Breaking 8/12 steps of LED-128 (improved from 6/12, with reduced complexities!)
- Better understanding of iterated Even-Mansour
- Does not go over all possible keys, applying a simpler operation than full encryption per guess.

$E\nu\chi\alpha\rho\iota\sigma\tau\omega!$

Thank you for your attention!

Paper to appear soon on eprint.