
1

New Constructions for Universally

Composable Computation Using Tamper

Proof Hardware

(Joint work with Nishanth Chandran and
Amit Sahai)

Vipul Goyal UCLA

2

Secure Multi-Party Computation
[Yao86, GMW87]

x1

x2
x3

x4f(x1,x2,x3,x4)

No information other than f(x1,x2,x3,x4)

3

Secure Multi-Party Computation Contd..

 Initially considered only in the isolated
setting. General positive results by [Yao86,
GMW87]

 Canetti [Canetti01] introduced the Universal
Composability framework to study protocols
in complex environments like the internet

4

Feasibility of UC Computation

 UC computation known to be impossible for a
large class of functionalities [CF01, CKL03]

 The above far-reaching impossibility results
hold only in the plain model (no trust
assumptions, no setup: the vanilla model)

5

Augmenting the Model

 Feasibility of UC can be regained assuming:
• A majority of the parties are honest [BGW89,

Can01]
• There exists a trusted “common reference string”

(CRS) available to all parties [CLOS02]
• Other setup assumptions like public key registration

 Katz [Katz07] proposed a “physical assumption”
sufficient for UC computation. Does not require a party
to place any trust in others.

UC Computation using Tamper Proof
Hardware [Katz 07]

 Token Exchange [One time Process]: Every party
sends tamper proof hardware (TPH) tokens to
every one else

 Tokens cannot communicate back with its creator

 During the protocol execution, interaction with
tokens received required

6

UC Computation using Tamper Proof
Hardware Contd ..

 Katz modeled tokens as ITM (which run a multi-
round protocol)

• Thus tokens have to reliably keep state (even when
e.g. the power supply is cut off)

 General feasibility results based on DDH provided

 Security proofs based on rewinding the token
received from malicious parties

• Assumption: malicious sender “knows” the code of
the tokens which he distributed

7

Knowing the code

 Undesirable: doesn’t capture real life attacks where an
adversary passes a token received from an honest party to
another honest party

 A naïve fix:

 Additionally, more sophisticated attacks can be imagined where
tokens of one type in one protocol used to create tokens of
another type in other protocols

8

0 0P1
P2

P1 P2 P3

Our Contributions

 New constructions: Improvements in several different
directions, substantially different techniques

• Knowing the code: Our security proofs are not based
on rewinding the malicious tokens

• Resettable Tokens: Interaction with the tokens
modeled as simple request/reply protocol. Hence
tokens not only resettable but completely stateless

• Our UC commitment protocol is based on one way
permutations

9

Our Construction: Key Idea

10

Sim M

MT

 Source of extra power of simulator in [Katz 07]:
Rewinding malicious tokens

Our Construction: Key Idea

 Our idea: Sim given access to queries made by a
malicious party to an honest token

 Similar to how proofs are done in the Random Oracle
Model

11

Sim M

HT

q,r
q

r

Our Construction: Exploiting this power

To commit to P2, P1 has to:

 Feed the commitment and opening to the tokens sent
by P2

 Obtain a signature on it

12

P2 P1

T

(com, σ)

(com,opening)

σ = sign(com)

Sim: com,opening σ

Our Construction: Main Issues

 Selective Abort: Token, for example, gives signature
if commitment is to 0 but aborts otherwise

• Solution: First get signatures on both: commitment
to 0 as well as to 1. Then use the appropriate one.

 P1 can’t send σ in clear: Information about opening
leaked potentially

• Send com(σ) instead + prove its validity

 Proving the validity is tricky: information about σ
should not be leaked. We use concurrent zero
knowledge for this purpose

13

Our Construction: Most Difficult
Aspects

 Ensure that an adversary can’t commit to σ +
prove its validity without querying the token to
obtain σ

 Extract σ in such a case and show signature
forgery

 Take this analysis “outside the UC framework”
in the form of a soundness lemma

14

UC –Com(a): High Level

15

commitments

com(∑ = signatures)

Generate n coms to 0
+ n coms to 1 +

signatures

com(∑0
1),com(∑1

1), … com(∑0
k),com(∑1

k)Generate and send
shares of ∑

∑0
i  ∑1

i =∑

q1 .. qk

Open Relevant Commits

Concurrent ZK

All are valid shares of ∑
+ ∑ represents valid signatures on commitments

P1 P2

Analysis

 Extraction straightline: Sim just looks at the queries
made by the committer

 Extraction Abort Lemma: To complete UC-Com
protocol, P1 has to query the token and get a signature

• Proven “outside the UC framework”

• We rewind the Env to extract this signature

• Challenge + opening shares mechanism enables the
extraction of the forged signature

Other Independent Works
[DNW08, MS08]

 Among other things, give constructions based on
general assumptions. However, do not solve the main
problems addressed in this work

 Both works are in the rewinding based simulator
paradigm as [Katz07]

• Thus, the assumption that sender knows the code of
its tokens is required

 Tokens are required to execute a multi-round protocol

• Resettable/stateless tokens not sufficient

Open Questions

 Obtain properties achieved in [DNW08, MS08]
with a non-rewinding simulator

 Obtain simpler and efficient constructions

19

Thank You

