New Constructions for Universally
Composable Computation Using Tamper
Proof Hardware

Vipul Goyal UCLA

(Joint work with Nishanth Chandran and
Amit Sahai)



Secure Multi-Party Computation

é

[Yao86, 6/ 87] R

M%M

F(X1,X2,X3,X,)

No information other than f(X;,X5,X3,X,)



Secure Multi-Party Computation Contd..

> Initially considered only in the isolated
setting. General positive results by [Yao86,
GMWS87]

» Canetti [CanettiOl] introduced the Universal
Composability framework to study protocols
in complex environments like the internet



Feasibility of UC Computation

> UC computation known to be impossible for a
large class of functionalities [CFO1, CKLO3]

> The above far-reaching impossibility results
hold only in the p/ain mode/ (no trust
assumptions, no setup: the vanilla model)



Augmenting the Model

> Feasibility of UC can be regained assuming:

* A majority of the parties are honest [BGW89,
Can01]

* There exists a trusted "common reference string”
(CRS) available to all parties [CLOS02]

* Other setup assumptions like public key registration

> Katz [KatzO7] proposed a “physical assumption”
sufficient for UC computation. Does not require a party
to place any trust in others.



UC Computation using Tamper Proof
Hardware [Katz 07]

> Token Exchange [One time Process]: Every party
sends tamper proof hardware (TPH) tokens to

every one else g g

> Tokens cannot communicate back with its creator

> During the protocol execution, interaction with
tokens received required

ée .




UC Computation using Tamper Proof
Hardware Contd ..

» Katz modeled tokens as ITM (which run a multi-
round protocol)

* Thus tokens have to reliably keep state (even when
e.g. the power supply is cut off)

> General feasibility results based on DDH provided

> Security proofs based on rewinding the token
received from malicious parties

* Assumption: malicious sender "knows" the code of
the tokens which he distributed



Knowing the code

Undesirable: doesn't capture real life attacks where an
adversary passes a token received from an honest party to
another honest party

A naive fix:
\ \

SV I Y
P, P, =

oN Py 0P, P

Additionally, more sophisticated attacks can be imagined where
tokens of one type in one protocol used to create tokens of
another type in other protocols



Our Con’rmbu‘nons

> New cons’rr'uc’rlons Impr'ovemem“s In sever'al d|ffer'en’r
directions, substantially different techniques

* Knowing the code: Our security proofs are not based
on rewinding the malicious tokens

- Resettable Tokens: Interaction with the tokens
modeled as simple request/reply protocol. Hence
tokens not only resettable but completely stateless

* Our UC commitment protocol is based on one way
permutations



Our Construction: Key Idea

> Source of extra power of simulator in [Katz 07]:
Rewinding malicious tokens

Il N
*v

10



Our Construction: Key Idea

> Our idea: Sim given access to queries made by a
malicious party to an honest token

L‘ q
q.r

r‘

- HT

> Similar o how proofs are done in the Random Oracle
Model

11



Our Construction: Exploiting this power

To commit to P,, P; has to:

> Feed the commitment and opening to the tokens sent
by P,
> Obtain a signature on it

e

Sim: com,opening . k‘

o = sign(com)

12



Our Construction: Main Issues

> Selective Abort: Token, for example, gives signhature
if commitment is fo O but aborts otherwise

» Solution: First get signatures on both: commitment
to O as well as to 1. Then use the appropriate one.

> P; can't send o in clear: Information about opening
leaked potentially

- Send com(o) instead + prove its validity

> Proving the validity is tricky: information about o
should not be leaked. We use concurrent zero
knowledge for this purpose

13



Our Construction: Most Difficult
Aspects

> Ensure that an adversary can't commit to o +
prove its validity without querying the token to
obtain o

> Extract o in such a case and show signature
forgery

> Take this analysis "outside the UC framework"
in the form of a soundness lemma

14



UC -Com(a): High Level

Generate n coms to O commitments
+ncomstol+
signatures

Gen:}:‘ggeesaggzs'end Com(ZOJ),Com(Z]]), Com(ZOk),Com(Z]k)

20/’ S Z/:Z

com(2 = signhatures)

>

< q1 - qx

Concurrent ZK

All are valid shares of S
+ ) represents valid signatures on commitments

15



Analysis

> Extraction straightline: Sim just looks at the queries
made by the committer

» Extraction Abort Lemma: To complete UC-Com
protocol, P, has to query the tfoken and get a signature

* Proven "outside the UC framework"
* We rewind the Env to extract this signature

* Challenge + opening shares mechanism enables the
extraction of the forged signature



Other Independent Works

> Among other things, give constructions based on
general assumptions. However, do not solve the main
problems addressed in this work

> Both works are in the rewinding based simulator
paradigm as [Katz07]

Thus, the assumption that sender knows the code of
its tokens is required

> Tokens are required to execute a multi-round protocol
Resettable/stateless tokens not sufficient



Open Questions

> Obtain properties achieved in [DNWO08, MS08]
with a non-rewinding simulator

> Obtain simpler and efficient constructions



Thank You



