
1

New Constructions for Universally

Composable Computation Using Tamper

Proof Hardware

(Joint work with Nishanth Chandran and
Amit Sahai)

Vipul Goyal UCLA

2

Secure Multi-Party Computation
[Yao86, GMW87]

x1

x2
x3

x4f(x1,x2,x3,x4)

No information other than f(x1,x2,x3,x4)

3

Secure Multi-Party Computation Contd..

 Initially considered only in the isolated
setting. General positive results by [Yao86,
GMW87]

 Canetti [Canetti01] introduced the Universal
Composability framework to study protocols
in complex environments like the internet

4

Feasibility of UC Computation

 UC computation known to be impossible for a
large class of functionalities [CF01, CKL03]

 The above far-reaching impossibility results
hold only in the plain model (no trust
assumptions, no setup: the vanilla model)

5

Augmenting the Model

 Feasibility of UC can be regained assuming:
• A majority of the parties are honest [BGW89,

Can01]
• There exists a trusted “common reference string”

(CRS) available to all parties [CLOS02]
• Other setup assumptions like public key registration

 Katz [Katz07] proposed a “physical assumption”
sufficient for UC computation. Does not require a party
to place any trust in others.

UC Computation using Tamper Proof
Hardware [Katz 07]

 Token Exchange [One time Process]: Every party
sends tamper proof hardware (TPH) tokens to
every one else

 Tokens cannot communicate back with its creator

 During the protocol execution, interaction with
tokens received required

6

UC Computation using Tamper Proof
Hardware Contd ..

 Katz modeled tokens as ITM (which run a multi-
round protocol)

• Thus tokens have to reliably keep state (even when
e.g. the power supply is cut off)

 General feasibility results based on DDH provided

 Security proofs based on rewinding the token
received from malicious parties

• Assumption: malicious sender “knows” the code of
the tokens which he distributed

7

Knowing the code

 Undesirable: doesn’t capture real life attacks where an
adversary passes a token received from an honest party to
another honest party

 A naïve fix:

 Additionally, more sophisticated attacks can be imagined where
tokens of one type in one protocol used to create tokens of
another type in other protocols

8

0 0P1
P2

P1 P2 P3

Our Contributions

 New constructions: Improvements in several different
directions, substantially different techniques

• Knowing the code: Our security proofs are not based
on rewinding the malicious tokens

• Resettable Tokens: Interaction with the tokens
modeled as simple request/reply protocol. Hence
tokens not only resettable but completely stateless

• Our UC commitment protocol is based on one way
permutations

9

Our Construction: Key Idea

10

Sim M

MT

 Source of extra power of simulator in [Katz 07]:
Rewinding malicious tokens

Our Construction: Key Idea

 Our idea: Sim given access to queries made by a
malicious party to an honest token

 Similar to how proofs are done in the Random Oracle
Model

11

Sim M

HT

q,r
q

r

Our Construction: Exploiting this power

To commit to P2, P1 has to:

 Feed the commitment and opening to the tokens sent
by P2

 Obtain a signature on it

12

P2 P1

T

(com, σ)

(com,opening)

σ = sign(com)

Sim: com,opening σ

Our Construction: Main Issues

 Selective Abort: Token, for example, gives signature
if commitment is to 0 but aborts otherwise

• Solution: First get signatures on both: commitment
to 0 as well as to 1. Then use the appropriate one.

 P1 can’t send σ in clear: Information about opening
leaked potentially

• Send com(σ) instead + prove its validity

 Proving the validity is tricky: information about σ
should not be leaked. We use concurrent zero
knowledge for this purpose

13

Our Construction: Most Difficult
Aspects

 Ensure that an adversary can’t commit to σ +
prove its validity without querying the token to
obtain σ

 Extract σ in such a case and show signature
forgery

 Take this analysis “outside the UC framework”
in the form of a soundness lemma

14

UC –Com(a): High Level

15

commitments

com(∑ = signatures)

Generate n coms to 0
+ n coms to 1 +

signatures

com(∑0
1),com(∑1

1), … com(∑0
k),com(∑1

k)Generate and send
shares of ∑

∑0
i ∑1

i =∑

q1 .. qk

Open Relevant Commits

Concurrent ZK

All are valid shares of ∑
+ ∑ represents valid signatures on commitments

P1 P2

Analysis

 Extraction straightline: Sim just looks at the queries
made by the committer

 Extraction Abort Lemma: To complete UC-Com
protocol, P1 has to query the token and get a signature

• Proven “outside the UC framework”

• We rewind the Env to extract this signature

• Challenge + opening shares mechanism enables the
extraction of the forged signature

Other Independent Works
[DNW08, MS08]

 Among other things, give constructions based on
general assumptions. However, do not solve the main
problems addressed in this work

 Both works are in the rewinding based simulator
paradigm as [Katz07]

• Thus, the assumption that sender knows the code of
its tokens is required

 Tokens are required to execute a multi-round protocol

• Resettable/stateless tokens not sufficient

Open Questions

 Obtain properties achieved in [DNW08, MS08]
with a non-rewinding simulator

 Obtain simpler and efficient constructions

19

Thank You

