Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products

Jonathan Katz (UMD), Amit Sahai (UCLA), Brent Waters (SRI)

Presented by Omkant Pandey (UCLA)

Standard public-key encryption

--- PK

(PK, S**I**S)K← Gen M = Dec_{SK}(C)

No one other than the designated recipient can get any information about the message

Usage in complex environments?

Encpks (X's grades)

PK₃

PK₂

PK

Encpkill's grades)

Drawbacks to standard PKE

- Senders still have to obtain/store/manage many users' public keys
- Sender needs to be *actively involved* in deciding to whom to encrypt
 - Ease of use?
 - Greater potential for security breach
- "Static" set of parties who can decrypt
 - Must be provisioned in advance

A new approach

- Functional Encryption
- High-level idea:
 - Secret keys associated with "functions"/"capabilities"
 - Ciphertexts associated with "attributes"
 - A secret key decrypts a ciphertext iff function evaluates to 1 on the attribute (i.e., the capability gives the explicit right to decrypt)
- This idea unifies and generalizes line of work initiated by Attribute-Based Encryption [SAHAI-WATERS 05]

Our Syntax

 Class of functions F; set of attributes Σ Algorithms (Gen, Derive, Enc, Dec) Gen(1ⁿ) outputs MPK, MSK Derive_{MSK}(f) returns SK_f (where $f \in F$) Enc_{MPK}(I, M) returns C (where I $\in \Sigma$) Dec_{SK}(Enc_{MPK}(I, M)) returns: • M if f(I) = 1• \perp if f(I) = 0

Security – Warm Up (Payload Hiding)

Hide the **message** as long as none of the adversary's capabilities give it the **explicit** right to decrypt

Actual Security: Attr + Payload Hiding

Hide the **message** as long as none of the adversary's capabilities give it the explicit right to decrypt and

Hide the **attribute** as long as none of the adversary's capabilities give it the explicit ability to distinguish

A framework for existing results

Framework captures:

- Identity-based encryption (IBE) [S 84, BF 01, C 01]
- Forward-secure encryption [СНК 03]
- Attribute-based encryption [SW 05, GPSW 06, BSW 07]
- Hidden-vector encryption [BW 07]
- ...more

E.g., Identity-based encryption

Σ = {0,1}*
F = {f_{ID} | ID ∈ {0,1}*}, where f_{ID}(ID') = 1 iff ID = ID' - I.e., *equality tests*Payload hiding = standard IBE
Attribute hiding = anonymous IBE

This work

 The functional encryption framework
 Attribute-hiding functional enc. for disjunctions

- Previous work handles *conjunctions* only
- Previous work mainly considers payload hiding
- Applications
 - Anonymous IBE; disjunctions of identities
- Generalizations
 - New functional enc. schemes for inner products, poly. evaluation, DNF/CNF formulae; and threshold IBE

Rest of the talk

- <u>Goal</u>: attribute-hiding identity-based encryption with disjunctions
- Generalization: functional encryption supporting "inner product" computations
 - A construction handling "inner product" functions
 - Applications to our goal, and more...

IBE with disjunctions

• $\Sigma = \{0,1\}^*$ • $F = \{f_{I_1, ..., I_n} \mid I_1, ..., I_n \in \Sigma\}$ • $f_{I_1, ..., I_n}(x) = 1$ iff $(x = I_1) \lor \cdots \lor (x = I_n)$

• Alternatively, $\Sigma = (\{0,1\}^*)^n$ and $f_{I_1, ..., I_n}(x_1, ..., x_n) = 1$ iff $(x_1 = I_1) \lor \cdots \lor (x_n = I_n)$

Why isn't it trivial (given anon IBE)?

Idea(?): use IBE + (trivial) secret sharing

Can tell whether you were fired for being a "New Employee" or being "Late for Work"

M

At

Should only learn that at least one of the two attributes were present in the message. Msg: M Id: BadEval

Msg: M Id: NewEmp

NOT ATTRIBUTE HIDING!

WANT: SKSKATERYZEWIDATE FOR WORKE FOR WORK

Inner product computations

• Let $\Sigma = Z_N^n$ • Let F = {f_v | v $\in Z_N^n$ }, where f_v(x) = 1 iff <v, x> = 0 mod N

Why this function...?

- Extend current state-of-the-art for Functional Encryption
- Applications...

Polynomial evaluation

The approach also extends to *multivariate* polynomials (complexity grows as O(d^t) for t-variate polynomials of degree at most d in each variable)

Disjunctions

Identity: I Message: M

Encrypt using the attribute I where $p(x) = (x - I_1)(x - I_2)$

 $p(I) = 0 \Leftrightarrow I \in \{I_1, I_2\}$

 $SK_{I_1 V I_2}$

SK_p

Conjunctions

Extending these ideas, can handle more complex CNF/DNF formulae

Other applications, too (see paper)

Our Construction (for Inner Products)

Background

Bilinear groups of composite order [BGN]
 N=pqr, product of *three* primes
 Use multiplicative notation for all groups...
 e: G × G → G_T s.t. e(P^a, Q^b) = e(P,Q)^{ab}

A nice feature here is "cancellation" across subgroups:

- Let G = G_p × G_q × G_r

- if $g_p \in G_p$ and $g_q \in G_q$, then $e(g_p, g_q) = 1$

Hardness assumptions

New, somewhat complicated...
...but fixed-size and non-interactive
Hold in the generic group model (assuming hardness of factoring N)
Intuitively, elements in different subgroups of G are indistinguishable (similar intuitively to the Subgroup Hiding Assumption of [BGN])

Intuition for the construction

• Computation of $\langle v, x \rangle$ done in G_a (in the

Details omitted! (See paper)

attribute hiding

Open questions

 Current situation seems analogous to the dawn of secure multi-party computation...

We have examples of functional encryption schemes for various classes of functionalities – what else can we do?

– Ultimate goal: any poly-time functionality!

 No inherent reason why this should not be possible, but would require solving long-standing crypto problems (e.g. reusable garbled circuits)

Thank you!