
Predicate Encryption Supporting
Disjunctions, Polynomial

Equations, and Inner Products

Jonathan Katz (UMD), Amit Sahai (UCLA), Brent Waters (SRI)

Presented by Omkant Pandey (UCLA)

Standard public-key encryption

(PK, SK)  Gen

PK

C  EncPK(M)

messageCC

M = DecSK(C)

No one other than the designated recipient can
get any information about the message

SK

Usage in complex environments?

PK1

PK2

PK3

PK4

PK1, PK2, PK3, PK4
New rule

Advisors should receive
their advisees’ grades!

Drawbacks to standard PKE

• Senders still have to obtain/store/manage many
users’ public keys

• Sender needs to be actively involved in deciding
to whom to encrypt

– Ease of use?

– Greater potential for security breach

• “Static” set of parties who can decrypt

– Must be provisioned in advance

A new approach

• Functional Encryption

• High-level idea:

– Secret keys associated with “functions”/”capabilities”

– Ciphertexts associated with “attributes”

– A secret key decrypts a ciphertext iff function evaluates to 1 on
the attribute (i.e., the capability gives the explicit right to
decrypt)

• This idea unifies and generalizes line of work
initiated by Attribute-Based Encryption [SAHAI-WATERS 05]

Our Syntax

• Class of functions F; set of attributes Σ

• Algorithms (Gen, Derive, Enc, Dec)

– Gen(1n) outputs MPK, MSK

– DeriveMSK(f) returns SKf (where f  F)

– EncMPK(I, M) returns C (where I  Σ)

– DecSKf
(EncMPK(I, M)) returns:

• M if f(I) = 1

•  if f(I) = 0

MPK

SKX’s grades

SKX’s grades

SK X’s grades

EncMPK(X’s grades, A+)

1. Sender only knows MPK
2. Sender need not decide who

should have access
3. “Dynamic” access to data

MPK

SKgrades

SKX

SK X ۸ grades

More generally…

EncMPK(X’s grades, A+)

personal

gradesX

۸

٧

Security – Warm Up (Payload Hiding)

• Consider the following experiment:
– Adversary chooses I  Σ; M0, M1

– Generate (MPK, MSK)

– Pick a random bit b; set C  EncMPK(I, Mb)

– Give the adversary MPK and C

– Adversary can request SKf1
,… as long as fi(I) = 0

• Security: adversary cannot guess b with
probability better than 1/2

Hide the message as long as none of the adversary’s
capabilities give it the explicit right to decrypt

Actual Security: Attr + Payload Hiding

• Consider the following experiment:
– Adversary outputs (I0, M0), (I1, M1) with Ib  Σ

– Generate (MPK, MSK)

– Pick a random bit b; set C  EncMPK(Ib, Mb)

– Give the adversary MPK and C

– Adversary can request SKf1
,… as long as:

• fi(I0) = fi(I1)

• If M0 ≠ M1  fi(I0) = 0 = fi(I1)

• Security: as before

Hide the message as long as none of the adversary’s
capabilities give it the explicit right to decrypt

and
Hide the attribute as long as none of the adversary’s

capabilities give it the explicit ability to distinguish

A framework for existing results

• Framework captures:

– Identity-based encryption (IBE) [S 84, BF 01, C 01]

– Forward-secure encryption [CHK 03]

– Attribute-based encryption [SW 05, GPSW 06, BSW 07]

– Hidden-vector encryption [BW 07]

– ..more

E.g., Identity-based encryption

• Σ = {0,1}*

• F = {fID | ID {0,1}*}, where
fID(ID’) = 1 iff ID = ID’

– I.e., equality tests

• Payload hiding = standard IBE

• Attribute hiding = anonymous IBE

This work

• The functional encryption framework

• Attribute-hiding functional enc. for
disjunctions
– Previous work handles conjunctions only

– Previous work mainly considers payload hiding

• Applications
– Anonymous IBE; disjunctions of identities

• Generalizations
– New functional enc. schemes for inner products, poly.

evaluation, DNF/CNF formulae; and threshold IBE

Rest of the talk

• Goal: attribute-hiding identity-based encryption
with disjunctions

• Generalization: functional encryption supporting
“inner product” computations

– A construction handling “inner product” functions

– Applications to our goal, and more…

IBE with disjunctions

•  = {0,1}*

• F = {fI1, …, In
| I1, …, In  }

• fI1, …, In
(x) = 1 iff (x = I1) ٧

… ٧ (x = In)

• Alternatively,  = ({0,1}*)n and

fI1, …, In
(x1, …, xn) = 1 iff

(x1 = I1) ٧
… ٧ (xn = In)

Why isn’t it trivial (given anon IBE)?

• Idea(?): use IBE + (trivial) secret sharing

WANT: SKNewEmp ٧ LateForWork

Msg: M
Id: NewEmp

SKNewEmp , SKLateForWork

Message: M=“You’re fired”
Attributes: BadEval, NewEmp

Msg: M
Id: BadEval

Not Attribute

Hiding!

Can tell whether you were fired
for being a “New Employee” or

being “Late for Work”

Should only learn that at least
one of the two attributes were

present in the message.

Inner product computations

• Let Σ = ZN
n

• Let F = {fv | v  ZN
n}, where

fv(x) = 1 iff <v, x> = 0 mod N

• Why this function…?

– Extend current state-of-the-art for Functional
Encryption

– Applications…

Polynomial evaluation

• Let Σ = ZN

• Let F = {fp | p  ZN[x], deg(p)<n}, where
fp(I) = 1 iff p(I) = 0

• To create a secret key for the polynomial
p(x) = anx

n-1 + … + a1x + a0,
construct a key for the vector (an, …, a0)

• To encrypt a message using attribute Y, encrypt using
the vector (Yn-1,Yn-2,…, Y1, 1)

• The inner product is 0 iff p(Y) = 0

Can also consider the “dual” construction, where
attributes are polynomials and functions

correspond to evaluation at a point

The approach also extends to multivariate polynomials
(complexity grows as O(dt) for t-variate polynomials

of degree at most d in each variable)

Disjunctions

SKI1 ٧ I2

Identity: I
Message: M

where p(x) = (x – I1)(x – I2)

SKp

Encrypt using the attribute I

p(I) = 0  I  {I1, I2}

Conjunctions

Attributes: I, I’

where p(x1, x2) = r (x1 – I1) + (x2 – I2)

SKp

Encrypt using the attributes
I and I’

(I, I’) = (I1, I2)  p(I, I’)=0
(I, I’) ≠ (I1, I2)  Pr[p(I, I’)=0] = negligible

SKI1 ۸ I2

Extending these ideas, can handle
more complex CNF/DNF formulae

Other applications, too (see paper)

Our Construction
(for Inner Products)

Background

• Bilinear groups of composite order [BGN]
– N=pqr, product of three primes

– Use multiplicative notation for all groups…

– e: G  G  GT s.t. e(Pa, Qb) = e(P,Q)ab

• A nice feature here is “cancellation” across
subgroups:
– Let G = Gp  Gq  Gr

– if gp  Gp and gq  Gq, then e(gp, gq) = 1

Hardness assumptions

• New, somewhat complicated…

• …but fixed-size and non-interactive

• Hold in the generic group model (assuming
hardness of factoring N)

• Intuitively, elements in different subgroups of G
are indistinguishable (similar intuitively to the
Subgroup Hiding Assumption of [BGN])

Intuition for the construction

• Computation of <v, x> done in Gq (in the

exponent, using bilinear map)

• Gp used to ensure that “decryption is done

correctly” (i.e., simplifies to 0 in the exponent

when terms multiplied correctly)

• Gr used as a “blinding factor” to achieve

attribute hiding

Details omitted!
(See paper)

Open questions

• Current situation seems analogous to the dawn of
secure multi-party computation…

• We have examples of functional encryption
schemes for various classes of functionalities –
what else can we do?
– Ultimate goal: any poly-time functionality!

– No inherent reason why this should not be possible,
but would require solving long-standing crypto
problems (e.g. reusable garbled circuits)

Thank you!

