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Modes of Operation

Construction of a Variable Input Length (VIL) primitive from a
Fixed Input Length (FIL) primitive.
» VIL primitives: MAC, PRF, Random Oracle (RO), . ...
» FIL primitive(s): by far, most dominant is a block-cipher.
» well understood, standardized (AES).
» directly used in the CBC mode.
» indirectly used in the Merkle-Damgard (MD) mode:
the compression function of SHA/MDS5 is instantiated
via Davies-Myers h(x,y) = Ex(y) ® y.
Subject of this talk: building VIL-primitives from block ciphers
(more generally, length-preserving functions).



A mode of operation for block-ciphers?

Construction C[f], based on a block-cipher f, should be:

v

Efficient: no re-keying, constant rate.
MAC preserving: C[f] is a VIL-MAC if f is a FIL-MAC.
PRF preserving: C[f] is a VIL-PRF if f is a FIL-PRF.

RO preserving: C[f] is indifferentiable from a VIL-RO if f
is a FIL-RO.

» in particular, C[f] is collision-resistant (if f is a FIL-RO).

vV v Vv

What about existing constructions?
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Good News:

» PRF preserving [BKR94]: if f is a PRF then CBC|[f] with
prefix-free encoding is a VIL-PRF.

Bad News:
» CBC[f] is not always a MAC, even if f is a MAC [AB'99].
» CBC|[f] is never collision resistant, for any f.
» In particular, CBC[f] is not a VIL-RO if f is a FIL-RO.



Merkle-Damgard Mode

“Plain Merkle-Damgard” MD[f]: {0,1}* — {0,1}".
Uses a compression function h: {0,1}"** — {0,1}".
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Good News: Although “plain MD" is too simple, minor
variants of it preserve PRF, MAC [AB99] and RO [CDMPO05].
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Good News: Although “plain MD" is too simple, minor
variants of it preserve PRF, MAC [AB99] and RO [CDMPO05].

X2 Xp—1 Xy

Bad News: Need a compression function h.

Can we build a compression function from a block-cipher?



Compression function from a block-cipher?

» Davies-Meyers h(x, y) = E,(y) @ y works for RO
[CDMP'05], but uses re-keying.
Doesn't make sense for keyed primitives (PRF, MAC).
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Compression function from a block-cipher?

» Davies-Meyers h(x, y) = E,(y) @ y works for RO
[CDMP'05], but uses re-keying.
Doesn't make sense for keyed primitives (PRF, MAC).

» Chopping (i.e. ignoring some bits of the output) works,
but terrible security, especially for MACs.

» Best previous construction for MACs is Luby-Rackoff with
superlogarithmic number of rounds [DP'07].

» Open before this work: constant rate VIL-MAC from a
length preserving MAC.



Enciphered CBC

f; = f(k;,.) with kq, ko, k3 independent keys.

Figure: H[fi, 5, f3], the basic three-key enciphered CBC
construction

H[f, f, ;] a VIL-PRF/MAC/RO if f is a length-preserving
PRF/MAC/RO.
Rate is 2.



Outline

Proof sketch of MAC property.
Proof sketch of RO property.
The RO property and invertability.

vV v v v

In the paper: Variant having just one key.
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h(x||Ix') = A(x) & &(x').
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A High Level View

X1

Can view this construction as f3(MD[h]) where
h(x||Ix') = A(x) & &(x').

Proof structure for MAC/RO

» Define appropriate notion of “collision resistance” CR
(different for MAC and RO).

» Prove that h(x||x") = fi(x) & f(x") is FIL-CR.

» Show that MD is preserving for CR:
MD[FIL-CR]—VIL-CR.

» Show that FIL-MAC(VIL-CR)—VIL-MAC and similarly
FIL-RO(VIL-CR)—VIL-RO.
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(t,q,¢€) secure Fixed-Input-Length
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Definition (VIL-MAC)

A family of functions f : {0,1}K x {0,1}* — {0,1}" is a
(t,q,¢€) secure Variable-Input-Length
Message-Authentication-Code (FIL-MAC) if for every

adversary A of size t making queries of total length at most g
blocks



Theorem (Enciphered CBC is MAC preserving)
Iff:{0,1}% x {0,1}" — {0,1}" is a (t, q,¢)-secure
FIL-MAC, then enciphered CBC instantiated with f is a

(t',q,¢ - g*)-secure variable input-length MAC, where
t'=t— O(gn).



Weak Collision Resistance [AB'99]

Definition

A family of functions f : {0,1}* x {0,1}™ — {0,1}" is

(t, q,€) weakly collision-resistant (WCR) if for any adversary A
of size t making at most g queries

PriK « {0, 1} AT — (M £ M), F(K, M) = f(K,M')] < ¢



Weak Collision Resistance [AB'99]

Definition

A family of functions f : {0,1}* x {0,1}™ — {0,1}" is

(t, q,€) weakly collision-resistant (WCR) if for any adversary A
of size t making at most g queries

PriK « {0, 1} AT — (M £ M), F(K, M) = f(K,M')] < ¢
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Lemma (AB’99)

> FIL-MAC— FIL-WCR
» MD[FIL-WCR]— VIL-WCR
> FIL-MAC(VIL-WCR)— VIL-MAC



Weak collision resistance of f{ ® £

Lemma
Let f:{0,1}* x {0,1}" — {0,1}" be a family of functions.
Define h : {0,1}%% x {0,1}?" — {0,1}"

h(ky, ko, x||x') = f(ki, x) @ f(ka, X')

If f is a (t,q,€)-secure MAC, then h is (t', q, ¢ - g*)-weakly
collision-resistant.

Proof.
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Weak collision resistance of f{ ® £

Lemma
Let f:{0,1}* x {0,1}" — {0,1}" be a family of functions.
Define h : {0,1}%% x {0,1}?" — {0,1}"

h(ky, ko, x||x') = f(ki, x) @ f(ka, X')

If f is a (t,q,€)-secure MAC, then h is (t', q, ¢ - g*)-weakly
collision-resistant.

Proof.

» Assume Pr[Af:% finds a collision with g queries] > 4.

» To forge fyx: Guess 1 < j; < jo < jz < ja < 2q run AP
with f, = f (or f; = fx).

» Stop when A makes ji'th query x;, and output forgery
guess (Xj4’ fl(le) ¥ f2(XJz) @ fl(Xja)) for f, = fx.

> Forgery correct if fi(x; ) ® fa(x;,) = fi(x;) @ f(x;,).



Indifferentiability [MRH'04],[CDMP’05]

Theorem
Hlf, f, f3] is % indifferentiable from a VIL-RO (here q is the
number of queries the distinguisher is allowed to make).

Right notion of collision resistance:

» We say h(xi||x2) = fi(x1) ® f(x2) is e-extractable (EX), if
there's an efficient E s.t. for all A;, Ay

> AP (v.9)
» E(y,oracle calls of A{l’@) —z

- ARR(9) — 2
» Priz#Z ANh(Z)=y] <e.

Lemma

> MD|FIL-EX]— VIL-EX
> FIL-RO(VIL-EX)— VIL-RO



fi ® f, is extractable

Lemma
If fi, f, are FIL-RO then h(x1||x2) = fi(x1) ® f(x2) is g*/2"
FIL-EX.



fi ® f, is extractable

Lemma

If fi, f, are FIL-RO then h(xi||x2) = fi(x1) & fa(x2) is g*/2"
FIL-EX.

E(y, oracle calls of A%"?) finds oracle calls xq, x; s.t.

fi(x1) ® f(x2) = y. If x1, % unique output them, otherwise
“give up”.
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f; : {0,1}" — {0,1}" are random functions.
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Indifferentiability from Permutations

» HI[f, £, f3] is indifferentiable from a random oracle if
f; : {0,1}" — {0,1}" are random functions.

» In practice, one would instantiate f; with a block-cipher
with a fixed key, but then not only f; but also its inverse
f.! can be evaluated by the attacker.

» Unfortunately H[my, mo, m3] is not indifferentiable if the

m;'s are random permutations where the attacker gets

access to m; and its inverse 7; '



Indifferentiability from Permutations

This construction is indifferentiable from a random oracle if
instantiated with random permutations 7y, 7, 3 over {0,1}"
where the adversary can query 7; and 7r,-_1.

Note that this is H[f, f, f3] with fi(x1) = m1(x1) ® x1,
H(x2) = ma(x) ® x2, B(x3) = m3(x3) ® 73 (x3)



Indifferentiability from Permutations cont.

filx) = m(x) & x1, L(x) = m(x) @ x,

fi(xs) = m3(xs) @ 737 (x3)

Lemma

f3(x3) = m3(x3) @ 73 (x3) is indifferentiable from a FIL-RO.



Indifferentiability from Permutations cont.

filx) = m(x) & x1, L(x) = m(x) @ x,

fi(xs) = m3(xs) @ 737 (x3)

Lemma

f3(x3) = m3(x3) @ 73 (x3) is indifferentiable from a FIL-RO.

Lemma
fi_(X]_) D fz(Xz) = ’/T]_(X]_) Dxy D 7T2(X2) D X is extractable.
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Conclusions and Open Problems
Conclusions

» Mode of operations for length preserving primitives
preserving MAC, PRF, RO.

» First domain expansion for length-preserving MACs with
constant rate.

» Hedge against security of underlying primitive: if its a
PRF we get a PRF, if its only a MAC we're guaranteed
to get a MAC.

Open Problems

» Security loss of reduction for MAC and indifferentiability
is g* (compared to g* achieved by An-Bellare for
shrinking MACs), can this be improved?

» We achieve rate 2, is this optimal? Is there an
efficiency /security trade-off as Rogaway & Steinberger
(next talk!) prove for constructions of CRHF from
random permutations.



any questions?



One-key Construction

X1

We can replace f’ also with f, and the mode still stays secure
for MACs when we prepend (and not append) the length (¢).
This can be a problem as the message length must be known

before processing begins.
()




Two-key Construction

The basic three-key construction

Can replace f(.) with a ® f(.) where « is a constant (not 0
or 1) in GF(2"). With a = 2 multiplication is very efficient
(one shift and at most one XOR).

X1




