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Modes of Operation

Construction of a Variable Input Length (VIL) primitive from a
Fixed Input Length (FIL) primitive.

◮ VIL primitives: MAC, PRF, Random Oracle (RO), . . ..

◮ FIL primitive(s): by far, most dominant is a block-cipher.
◮ well understood, standardized (AES).
◮ directly used in the CBC mode.
◮ indirectly used in the Merkle-Damg̊ard (MD) mode:

the compression function of SHA/MD5 is instantiated
via Davies-Myers h(x , y) = Ex(y)⊕ y .

Subject of this talk: building VIL-primitives from block ciphers
(more generally, length-preserving functions).



A mode of operation for block-ciphers?

Construction C [f ], based on a block-cipher f , should be:

◮ Efficient: no re-keying, constant rate.

◮ MAC preserving: C [f ] is a VIL-MAC if f is a FIL-MAC.

◮ PRF preserving: C [f ] is a VIL-PRF if f is a FIL-PRF.

◮ RO preserving: C [f ] is indifferentiable from a VIL-RO if f
is a FIL-RO.

◮ in particular, C [f ] is collision-resistant (if f is a FIL-RO).

What about existing constructions?



CBC Mode

x1 x2 x3 xℓ

⊕ ⊕ ⊕

f f f f

Good News:

Bad News:



CBC Mode

x1 x2 x3 xℓ

⊕ ⊕ ⊕

f f f f

Good News:

◮ PRF preserving [BKR94]: if f is a PRF then CBC [f ] with
prefix-free encoding is a VIL-PRF.

Bad News:



CBC Mode

x1 x2 x3 xℓ

⊕ ⊕ ⊕

f f f f

Good News:

◮ PRF preserving [BKR94]: if f is a PRF then CBC [f ] with
prefix-free encoding is a VIL-PRF.

Bad News:

◮ CBC [f ] is not always a MAC, even if f is a MAC [AB’99].



CBC Mode

x1 x2 x3 xℓ

⊕ ⊕ ⊕

f f f f

Good News:

◮ PRF preserving [BKR94]: if f is a PRF then CBC [f ] with
prefix-free encoding is a VIL-PRF.

Bad News:

◮ CBC [f ] is not always a MAC, even if f is a MAC [AB’99].

◮ CBC [f ] is never collision resistant, for any f .



CBC Mode

x1 x2 x3 xℓ

⊕ ⊕ ⊕

f f f f

Good News:

◮ PRF preserving [BKR94]: if f is a PRF then CBC [f ] with
prefix-free encoding is a VIL-PRF.

Bad News:

◮ CBC [f ] is not always a MAC, even if f is a MAC [AB’99].

◮ CBC [f ] is never collision resistant, for any f .

◮ In particular, CBC [f ] is not a VIL-RO if f is a FIL-RO.
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“Plain Merkle-Damg̊ard” MD[f ] : {0, 1}∗ → {0, 1}n.
Uses a compression function h : {0, 1}n+t → {0, 1}n.

x1 x2 xℓ−1 xℓ

IV h h h h

Good News: Although “plain MD” is too simple, minor
variants of it preserve PRF, MAC [AB99] and RO [CDMP05].

Bad News: Need a compression function h.

Can we build a compression function from a block-cipher?
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Compression function from a block-cipher?

◮ Davies-Meyers h(x , y) = Ex(y)⊕ y works for RO
[CDMP’05], but uses re-keying.
Doesn’t make sense for keyed primitives (PRF, MAC).

◮ Chopping (i.e. ignoring some bits of the output) works,
but terrible security, especially for MACs.

◮ Best previous construction for MACs is Luby-Rackoff with
superlogarithmic number of rounds [DP’07].

◮ Open before this work: constant rate VIL-MAC from a
length preserving MAC.



Enciphered CBC

fi = f (ki , .) with k1, k2, k3 independent keys.

x1 x2 x3 xℓ 〈ℓ〉

f2 f2 f2 f2

⊕ ⊕ ⊕ ⊕

f1 f1 f1 f1 f3

Figure: H[f1, f2, f3], the basic three-key enciphered CBC
construction

H[f1, f2, f3] a VIL-PRF/MAC/RO if f is a length-preserving
PRF/MAC/RO.
Rate is 2.



Outline

◮ Proof sketch of MAC property.

◮ Proof sketch of RO property.

◮ The RO property and invertability.

◮ In the paper: Variant having just one key.
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Can view this construction as f3(MD[h]) where
h(x‖x ′) = f1(x)⊕ f2(x

′).

Proof structure for MAC/RO

◮ Define appropriate notion of “collision resistance” CR
(different for MAC and RO).

◮ Prove that h(x‖x ′) = f1(x)⊕ f2(x
′) is FIL-CR.

◮ Show that MD is preserving for CR:
MD[FIL-CR]→VIL-CR.

◮ Show that FIL-MAC(VIL-CR)→VIL-MAC and similarly
FIL-RO(VIL-CR)→VIL-RO.
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A family of functions f : {0, 1}k × {0, 1}m → {0, 1}n is a
(t, q, ǫ) secure Fixed-Input-Length
Message-Authentication-Code (FIL-MAC) if for every
adversary A of size t making at most q queries

Pr[K ← {0, 1}k ; Af (K ,.) → (M , φ); f (K , M) = φ] ≤ ǫ

Definition (VIL-MAC)
A family of functions f : {0, 1}k × {0, 1}∗ → {0, 1}n is a
(t, q, ǫ) secure Variable-Input-Length
Message-Authentication-Code (FIL-MAC) if for every
adversary A of size t making queries of total length at most q
blocks



Theorem (Enciphered CBC is MAC preserving)
If f : {0, 1}k × {0, 1}n → {0, 1}n is a (t, q, ε)-secure
FIL-MAC, then enciphered CBC instantiated with f is a
(t ′, q, ε · q4)-secure variable input-length MAC, where
t ′ = t −O(qn).
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Definition
A family of functions f : {0, 1}k × {0, 1}m → {0, 1}n is
(t, q, ǫ) weakly collision-resistant (WCR) if for any adversary A
of size t making at most q queries

Pr[K ← {0, 1}k ; Af (K ,.) → (M 6= M ′); f (K , M) = f (K , M ′)] ≤ ǫ

x1 x2 xℓ 〈ℓ〉

IV h1 h1 h1 h1 h2

Lemma (AB’99)

◮ FIL-MAC→FIL-WCR

◮ MD[FIL-WCR]→VIL-WCR

◮ FIL-MAC(VIL-WCR)→VIL-MAC



Weak collision resistance of f1 ⊕ f2

Lemma
Let f : {0, 1}k × {0, 1}n → {0, 1}n be a family of functions.
Define h : {0, 1}2k × {0, 1}2n → {0, 1}n

h(k1, k2, x‖x
′) = f (k1, x)⊕ f (k2, x

′)

If f is a (t, q, ǫ)-secure MAC, then h is (t ′, q, ǫ · q4)-weakly
collision-resistant.

Proof.
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Weak collision resistance of f1 ⊕ f2

Lemma
Let f : {0, 1}k × {0, 1}n → {0, 1}n be a family of functions.
Define h : {0, 1}2k × {0, 1}2n → {0, 1}n

h(k1, k2, x‖x
′) = f (k1, x)⊕ f (k2, x

′)

If f is a (t, q, ǫ)-secure MAC, then h is (t ′, q, ǫ · q4)-weakly
collision-resistant.

Proof.

◮ Assume Pr[Af1,f2 finds a collision with q queries] > δ.

◮ To forge fK : Guess 1 ≤ j1 < j2 < j3 < j4 ≤ 2q run Af1,f2

with f2 = fK (or f1 = fK ).

◮ Stop when A makes j4’th query xj4 and output forgery
guess (xj4, f1(xj1)⊕ f2(xj2)⊕ f1(xj3)) for f2 = fK .

◮ Forgery correct if f1(xj1)⊕ f2(xj2) = f1(xj3)⊕ f2(xj4).



Indifferentiability [MRH’04],[CDMP’05]

Theorem
H[f1, f2, f3] is q4

2n indifferentiable from a VIL-RO (here q is the
number of queries the distinguisher is allowed to make).

Right notion of collision resistance:

◮ We say h(x1‖x2) = f1(x1)⊕ f2(x2) is ǫ-extractable (EX), if
there’s an efficient E s.t. for all A1, A2

◮ A
f1,f2
1 → (y , φ)

◮ E (y , oracle calls of A
f1,f2
1 )→ z

◮ A
f1,f2
2 (φ)→ z ′

◮ Pr[z 6= z ′ ∧ h(z ′) = y ] ≤ ǫ.

Lemma

◮ MD[FIL-EX]→VIL-EX

◮ FIL-RO(VIL-EX)→VIL-RO



f1 ⊕ f2 is extractable

Lemma
If f1, f2 are FIL-RO then h(x1‖x2) = f1(x1)⊕ f2(x2) is q4/2n

FIL-EX.



f1 ⊕ f2 is extractable

Lemma
If f1, f2 are FIL-RO then h(x1‖x2) = f1(x1)⊕ f2(x2) is q4/2n

FIL-EX.

E (y , oracle calls of Af1,f2
1 ) finds oracle calls x1, x2 s.t.

f1(x1)⊕ f2(x2) = y . If x1, x2 unique output them, otherwise
“give up”.
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Indifferentiability from Permutations

◮ H[f1, f2, f3] is indifferentiable from a random oracle if
fi : {0, 1}n → {0, 1}n are random functions.

◮ In practice, one would instantiate fi with a block-cipher
with a fixed key, but then not only fi but also its inverse
f −1
i can be evaluated by the attacker.

◮ Unfortunately H[π1, π2, π3] is not indifferentiable if the
πi ’s are random permutations where the attacker gets
access to πi and its inverse π−1

i .



Indifferentiability from Permutations

x1 x2 x3 xℓ 〈ℓ〉

π2 π2 π2 π2

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕

π1 π1 π1 π1 π−1
3 π3

⊕ ⊕ ⊕ ⊕

This construction is indifferentiable from a random oracle if
instantiated with random permutations π1, π2, π3 over {0, 1}n

where the adversary can query πi and π−1
i .

Note that this is H[f1, f2, f3] with f1(x1) = π1(x1)⊕ x1,
f2(x2) = π2(x2)⊕ x2, f3(x3) = π3(x3)⊕ π−1

3 (x3)



Indifferentiability from Permutations cont.

f1(x1) = π1(x1)⊕ x1, f2(x2) = π2(x2)⊕ x2,
f3(x3) = π3(x3)⊕ π−1

3 (x3)

Lemma
f3(x3) = π3(x3)⊕ π−1

3 (x3) is indifferentiable from a FIL-RO.



Indifferentiability from Permutations cont.

f1(x1) = π1(x1)⊕ x1, f2(x2) = π2(x2)⊕ x2,
f3(x3) = π3(x3)⊕ π−1

3 (x3)

Lemma
f3(x3) = π3(x3)⊕ π−1

3 (x3) is indifferentiable from a FIL-RO.

Lemma
f1(x1)⊕ f2(x2) = π1(x1)⊕ x1 ⊕ π2(x2)⊕ x2 is extractable.
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Conclusions and Open Problems
Conclusions

◮ Mode of operations for length preserving primitives
preserving MAC , PRF , RO.

◮ First domain expansion for length-preserving MACs with
constant rate.

◮ Hedge against security of underlying primitive: if its a
PRF we get a PRF , if its only a MAC we’re guaranteed
to get a MAC.

Open Problems
◮ Security loss of reduction for MAC and indifferentiability

is q4 (compared to q2 achieved by An-Bellare for
shrinking MACs), can this be improved?

◮ We achieve rate 2, is this optimal? Is there an
efficiency/security trade-off as Rogaway & Steinberger
(next talk!) prove for constructions of CRHF from
random permutations.



any questions?



One-key Construction
x1 x2 x3 xℓ 〈ℓ〉

f f f f

⊙ α ⊙ α ⊙ α ⊙ α

⊕ ⊕ ⊕ ⊕

f f f f f ′

We can replace f ′ also with f , and the mode still stays secure
for MACs when we prepend (and not append) the length 〈ℓ〉.
This can be a problem as the message length must be known
before processing begins.

〈ℓ〉 x1 x2 xℓ−1 xℓ

f f f f

⊙ α ⊙ α ⊙ α ⊙ α

⊕ ⊕ ⊕ ⊕

f f f f f



Two-key Construction

The basic three-key construction
x1 x2 x3 xℓ 〈ℓ〉

f2 f2 f2 f2

⊕ ⊕ ⊕ ⊕

f1 f1 f1 f1 f3

Can replace f2(.) with α⊙ f2(.) where α is a constant (not 0
or 1) in GF(2n). With α = 2 multiplication is very efficient
(one shift and at most one XOR).

x1 x2 x3 xℓ 〈ℓ〉

f f f f

⊙ α ⊙ α ⊙ α ⊙ α

⊕ ⊕ ⊕ ⊕

f f f f f ′


