Outline	Problem overview	Previous work 000 0000	Our scheme 000 00000 0	Conclusions and open problems

Zero Knowledge Sets with short proofs

Dario Catalano Dario Fiore Mariagrazia Messina¹

Dipartimento di Matematica ed Informatica - Università di Catania, Italy

April 16, 2008

EUROCRYPT 2008 - Istanbul

¹Now in Microsoft Italia

Dario Catalano, Dario Fiore, Mariagrazia Messina

Dipartimento di Matematica ed Informatica – Università di Catania, Italy

Zero Knowledge Sets with short proofs

Outline	Problem overview	Previous work 000 0000	Our scheme 000 00000 0	Conclusions and open problems

Outline

Problem overview

Previous work Commitment schemes

MRK scheme

Our scheme

Basic idea *q*-mercurial commitments Results

Conclusions and open problems

Dario Catalano, Dario Fiore, Mariagrazia Messina

Dipartimento di Matematica ed Informatica - Università di Catania, Italy

Outline	Problem overview	Previous work 000 0000	Our scheme 000 00000 0	Conclusions and open problems

Zero Knowledge sets

Parties

- ► A prover *P*
- A verifier \mathcal{V}

The problem

- \mathcal{P} knows a finite secret set S
- ▶ \mathcal{V} is allowed to ask \mathcal{P} questions of the form: " $x \in S$ " or " $x \notin S$ "
- *P* answers such questions by providing publicly verifiable proofs

Dario Catalano, <u>Dario Fiore</u>, Mariagrazia Messina Dipartimento di Matematica ed Informatica – Università di Catania, Italy Zero Knowledge Sets with short proofs

Outline	Problem overview	Previous work 000 0000	Our scheme 000 00000 0	Conclusions and open problems

Informal requirements

- The proofs should not reveal any further information (i.e. not even the size of S)
- The proofs should be reliable
 - ► A cheating P cannot convince V that some element x is in the set while is not (or viceversa).
 - ► V learns about S only membership or non membership of elements.

Out		

Previous work 000 0000 Our scheme

Conclusions and open problems

Zero Knowledge EDB - Formal definition

- The problem was first defined by [MRK03].
- More precisely they defined Zero Knowledge Elementary Databases (EDBs)
- Notation
 - Let D be a database, x a DB key
 - D(x) = y: if y is the database value associated to x
 - $D(x) = \bot$: if $x \notin D$.

Dario Catalano, Dario Fiore, Mariagrazia Messina

▲ □ ▶ ▲ 三 ▶ ▲

Outline	Problem overview	Previous work 000 0000	Our scheme 000 00000 0	Conclusions and open problems

Elementary Databases

Formally, an EDB system is defined by a triple of algorithms:

- Commit(CRS, D) → (ZPK, ZSK) //D database, CRS common reference string
- ▶ *Prove*(*CRS*, *ZSK*, *x*) → (π_x) // *x* DB key, π_x proof of either D(x) = y or $D(x) = \bot$
- Verify(CRS, ZPK, x, π_x) outputs y if D(x) = y, out if D(x) = ⊥ or ⊥ if π_x is not valid.

Dario Catalano, Dario Fiore, Mariagrazia Messina

Dipartimento di Matematica ed Informatica - Università di Catania, Italy

A (1) > A (1) > A

0			
U	ιı		

Previous work 000 0000 Our scheme

Conclusions and open problems

Zero Knowledge EDBs - Requirements

- 1. Completeness. Proofs created by a honest prover are correct.
- 2. *Soundness.* A dishonest prover cannot produce two different proofs for the same value, that are both valid.
- 3. Zero-Knowledge. Proofs do not reveal any information except membership or not membership.

Outline	Problem overview	Previous work 000 0000	Our scheme 000 00000 0	Conclusions and open problems

"ZKS story"

- [MRK03] proposed a construction of ZKS by using a variant of the Pedersen's Commitment in the CRS
- Later [CHMLR05] showed that:
 - such variant is an instantiation of a new type of commitments: "mercurial commitments"
 - mercurial commitments can be used as building block for ZKS
 - mercurial commitments can be built from general assumptions (i.e. NIZK)
- Finally [CDV06] gave a construction of mercurial commitments from one way functions in the CRS
- This result showed that ZKS are equivalent to collision resistant hash functions in the CRS

Commitment scheme

- Digital equivalent of an opaque envelop.
- 1. *Hiding property.* Whatever is put inside the envelop remain secret until the latter is opened.
- 2. *Binding property.* Whoever creates the commitment should not be able to open it with a message that is not the one originally inserted
- Example: Perdersen's commitment (based on discrete log).

Dario Catalano, <u>Dario Fiore</u>, Mariagrazia Messina Zero Knowledge Sets with short proofs Dipartimento di Matematica ed Informatica - Università di Catania, Italy

Outline	Problem overview	Previous work ○●○ ○○○○	Our scheme 000 00000 0	Conclusions and open problems
Commitment s	chemes			

Mercurial commitments

- [CHMLR05] introduced mercurial commitments and defined their properties
- A mercurial commitment can be created hard or soft.
- ► Two decommiting produres: *hard-opening*, *soft-opening*.
- Hard commitments are like standard ones:
 - they can be hard/soft-opened only with respect to the message used to construct the commitment

→ Ξ →

Soft commitments can be soft-opened to any message, but they cannot be hard opened.

Outline		Previous work oo● ○○○○	Our scheme 000 00000 0	Conclusions and open problems
Commitment	schemes			

Mercurial commitments - Properties

- They satisfy slightly different binding and hiding properties according to the new definition:
 - Mercurial binding
 - Mercurial hiding: it is infeasible to distinguish hard commitments from soft ones

MRK scheme

Construction by [MRK03] with the generalization by Chase *et al.* using mercurial commitments.

- Use an authenticated Merkle tree of depth k.
- ► Each leaf is related to a DB key x and contains the commitment to D(x) (or to 0 if D(x) = ⊥)
- Each node is a mercurial commitment of its two children.

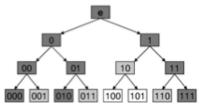


Figure: The complete labeled binary tree of depth 3 for $S = \{000, 010, 111\}$. The light shaded vertices comprise *FRONTIER(S)*.

Dario Catalano, <u>Dario Fiore</u>, Mariagrazia Messina

\cap	utl	
U	uι	e

Previous work

Our scheme

Conclusions and open problems

MRK scheme

MRK scheme (2)

- To prove that x ∈ {0,1}^k belongs to the committed set S, the prover opens all the commitments in the path from the root ε to the leaf labeled by x.
- Verification: verify each commitment in the path.

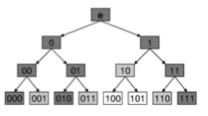


Figure: The complete labeled binary tree of depth 3 for $S = \{000, 010, 111\}$. The light shaded vertices comprise *FRONTIER(S)*.

Dario Catalano, Dario Fiore, Mariagrazia Messina

Dipartimento di Matematica ed Informatica - Università di Catania, Italy

Outline	Problem overview	Previous work ○○○ ○○●○	Our scheme 000 00000 0	Conclusions and open problems
MRK scheme				

MRK scheme (3)

- It is not necessary to generate the complete binary tree.
- Prune the tree by cutting those subtrees containing only keys of elements not in the database.
- The roots of such subtrees are kept in the tree ("frontier").
- Frontier nodes contain soft commitments "to nothing".

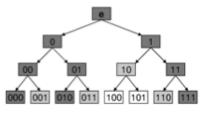


Figure: The complete labeled binary tree of depth 3 for $S = \{000, 010, 111\}$. The light shaded vertices comprise *FRONTIER*(*S*).

Dario Catalano, Dario Fiore, Mariagrazia Messina

Dipartimento di Matematica ed Informatica - Università di Catania, Italy

Outline	Problem overview	Previous work ○○○ ○○○●	Our scheme 000 00000 0	Conclusions and open problems
MRK scheme				

MRK scheme (4)

- ► Upon receiving a query for x ∉ S, the missing subtree containing x is generated on-line.
- Soft commitments in the frontier nodes are then soft-opened to the values contained in its newly generated children.

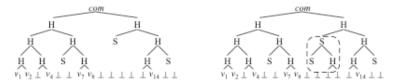


Figure: A commitment tree before and after a query for key 101, whose value is not the DB. The parts built in response to the query are shown in the second tree. Hard commitments are denoted by H and soft commitments by S.

Dario Catalano, <u>Dario Fiore</u>, Mariagrazia Messina Dipartimento di Matematica ed Informatica – Università di Catania, Italy Zero Knowledge Sets with short proofs

Outline	Problem overview	Previous work 000 0000	Our scheme ● O O ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Conclusions and open problems
Basic idea				

Motivating question

Assumptions to construct ZKS are well studied

What about practical solutions?

In the MRK scheme verification time and proof length are linear in $log_2(2^k)$ (for $x \in \{0,1\}^k$).

Dario Catalano, Dario Fiore, Mariagrazia Messina

Outline	Problem overview	Previous work 000 0000	Our scheme ●00 ○0000	Conclusions and open problems
Basic idea				

Motivating question

Assumptions to construct ZKS are well studied

What about practical solutions?

In the MRK scheme verification time and proof length are linear in $log_2(2^k)$ (for $x \in \{0,1\}^k$).

Idea:

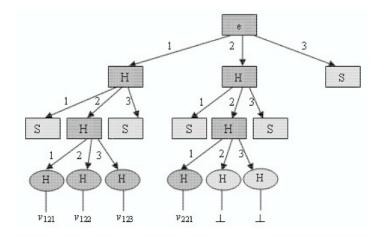
Reducing tree height by increasing the branching factor of the tree

Outline	Problem overview	Previous work
		0000

Our scheme 000

Basic idea

Result: a q-ary tree



Dario Catalano, Dario Fiore, Mariagrazia Messina

< 🗇 🕨 Dipartimento di Matematica ed Informatica - Università di Catania, Italy

- ∢ ≣ ▶

3

Zero Knowledge Sets with short proofs

Basic idea	Outline	Problem overview	Previous work 000 0000	Our scheme OO● ○○○○○	Conclusions and open problems
	Basic idea				

The trivial solution

MRK with *q*-ary trees

Issues:

- For a correct authentication we need to give all the siblings for each level
- Proof length remains the same as in MRK

Outline		Previous work 000 0000	Our scheme ○○○ ●○○○○	Conclusions and open problems
q-mercurial c	commitments			

Solution: *q*-mercurial commitments

- We propose a new primitive called "trapdoor q-mercurial commitment" (qTMC)
- We prove that ZKS can be constructed from qTMC
- qTMC allows to commit to an (ordered) sequence of q messages
- The binding property keeps in consideration the position of each message in the sequence.

Previous work 000 0000 Our scheme

Conclusions and open problems

q-mercurial commitments

qTMC construction from SDH assumption

We propose a construction based on the Strong Diffie-Hellman assumption (SDH) [BB04].

SDH assumption

Informally, the SDH assumption in bilinear groups G_1 , G_2 of prime order p states that, for every PPT algorithm \mathcal{A} and for a parameter q, the following probability is negligible:

$$\Pr[\mathcal{A}(g_1, g_1^{x}, g_1^{(x^2)}, \cdots, g_1^{(x^q)}, g_2, g_2^{x}) = (c, g_1^{1/(x+c)})].$$

Dario Catalano, Dario Fiore, Mariagrazia Messina

Dipartimento di Matematica ed Informatica - Università di Catania, Italy

A (1) > A (1) > A

q-mercurial commitments

qTMC construction (sketch)

 The construction is inspired to the simulator of the Boneh-Boyen weak signature scheme.

►
$$PK = (A_0 = g_1, A_1 = g_1^x, \cdots, A_q = g_1^{x^q}, g_2, h = g_2^x), TK = x$$

• qHCom
$$(m_1, \cdots, m_q)$$
.

- $C_i = H(i||m_i)$ binds each message with its position.
- Define f(z) = Π^q_{i=1}(z + C_i). Extract β_i coefficients. Pick α random. Let γ = αx
- Set $g_1' = g_1^{f(\alpha x)} = \prod_{i=0}^q A_i^{\beta_i \alpha^i}$, $g_2' = g_2^{\gamma} = h^{\alpha}$.
- ► The commitment is C = (g'₁, g'₂) (similar to BB simulator's PK)

Dario Catalano, Dario Fiore, Mariagrazia Messina

< ロ > < 同 > < 回 > < 回

Outline	Problem overview	Previous wor
		0000

a-mercurial commitments

Our scheme

Conclusions and open problems

qTMC construction (sketch)

qHOpen_{PK}(m, j, aux). Output all values needed to reconstruct the commitment.

 $(\alpha, m_1, \cdots, m_{j-1}, m_{j+1}, \cdots, m_q).$

- qSCom_{*PK*}(). Create random values g'_1, g'_2 . Pick random $\alpha', y \leftarrow \mathbb{Z}_p^*$, set $g'_1 = g_1^{\alpha'}, g'_2 = g_2^y$. Output $C = (g'_1, g'_2)$.
- qSOpen_{PK}(m, j, flag, aux)
 - ► If flag = \mathbb{H} . Define $f_j(z) = \frac{f(z)}{(z+C_j)} = \prod_{i=1 \land i \neq j}^q (z+C_i) = \sum_{i=0}^{q-1} \delta_i z^i$. Compute $\sigma_j = (g'_1)^{\frac{1}{\gamma+C_j}} = g_1^{\frac{f(\gamma)}{\gamma+C_j}} = \prod_{i=0}^{q-1} A_i^{\delta_i \alpha^i}$. (similar to BB simulator's signature extraction)

• If flag =
$$\mathbb{S}$$
 output $\sigma_j = (g'_1)^{\overline{y+C_j}}$

Outline	Problem overview	Previous work 000 0000	Our scheme ○○○ ○○○○● ○	Conclusions and open problems
q-mercurial c	ommitments			

qTMC construction

• qSVer_{PK}(
$$m, j, C, \tau$$
) // $C = (g'_1, g'_2), \tau = \sigma_j$
Check if $e(\sigma_j, g'_2 g_2^{C_j}) = e(g'_1, g_2)$.

Correctness If $\sigma_j = (g'_1)^{\frac{1}{\gamma+C_j}}$ then $e((g'_1)^{\frac{1}{\gamma+C_j}}, g_2^{\gamma}g_2^{C_j}) = e(g'_1, g_2)$

Dario Catalano, Dario Fiore, Mariagrazia Messina Dipartimento di Matematica ed Informatica – Università di Catania, Italy

回 と く ヨ と く ヨ と

Zero Knowledge Sets with short proofs

Outline	Problem overview	Previous work 000 0000	Our scheme ○○○ ○○○○● ○	Conclusions and open problems
q-mercurial c	ommitments			

qTMC construction

• qSVer_{PK}(
$$m, j, C, \tau$$
) // $C = (g'_1, g'_2), \tau = \sigma_j$
Check if $e(\sigma_j, g'_2 g_2^{C_j}) = e(g'_1, g_2)$.

$\begin{array}{l} \text{Correctness} \\ \text{If } \sigma_j = \left(g_1'\right)^{\frac{1}{\gamma+C_j}} \text{ then } e(\left(g_1'\right)^{\frac{1}{\gamma+C_j}}, g_2^{\gamma}g_2^{C_j}) = e(g_1', g_2) \end{array}$

Efficiency of qTMC

- Size of each hard opening still depends linearly on q.
- Size of each soft opening is *indipendent* of $q // \Theta(1)!$

Outline	Problem overview	Previous work 000 0000	Our scheme	Conclusions and open problems
Results				

ZKS from qTMC - Results

Table: Length of the proofs (expressed as number of group elements) in the case of k = 128 bits of security

	Membership	Non-membership
MRK scheme	773	644
Our scheme $(q = 8)$	517	175
	(33% shorter)	(73% shorter)

Dario Catalano, Dario Fiore, Mariagrazia Messina

Dipartimento di Matematica ed Informatica - Università di Catania, Italy

Zero Knowledge Sets with short proofs

Outline	Previous work 000 0000	Our scheme 000 00000 0	Conclusions and open proble

Conclusions and open problems

- Our work introduces a new primitive called *q*-mercurial commitment (qTMC)
- qTMCs are used to improve the construction of zero-knowledge sets in terms of proofs length
- Interesting challenges:
 - to construct more efficient qTMCs
 - in particular to construct a qTMC that allows for hard-openinings with lenght independent of q

Dario Catalano, Dario Fiore, Mariagrazia Messina

ems

Outline	Problem overview	Previous work 000 0000	Our scheme 000 00000 0	Conclusions and open problems

Thanks!

Dario Catalano, <u>Dario Fiore</u>, Mariagrazia Messina

Dipartimento di Matematica ed Informatica – Università di Catania, Italy

-∢ ≣ ▶

3

Zero Knowledge Sets with short proofs