Range Extension for Weak PRFs

Krzysztof Pietrzak (CWI Amsterdam) Johan Sjödin(ETH Zürich)

(weak) pseudorandom functions

$$\mathcal{F} = \{\mathcal{F}_1, \mathcal{F}_2, \ldots\}, \mathcal{F}_n : \mathcal{K}_n \times \mathcal{X}_n \to \mathcal{Y}_n$$

is a pseudorandom function (PRF) if

- F(k, x) can be efficiently computed.
- ► F(k,.) (with a random key k ∈ K_n) cannot be efficiently distinguished from a uniformly random function R

(weak) pseudorandom functions

$$\mathcal{F} = \{\mathcal{F}_1, \mathcal{F}_2, \ldots\}, \mathcal{F}_n : \mathcal{K}_n \times \mathcal{X}_n \to \mathcal{Y}_n$$

is a weak pseudorandom function (wPRF) if

- F(k, x) can be efficiently computed.
- ► F(k,.) (with a random key k ∈ K_n) cannot be efficiently distinguished from a uniformly random function R when queried on random inputs.

(weak) pseudorandom functions

$$\mathcal{F} = \{\mathcal{F}_1, \mathcal{F}_2, \ldots\}, \mathcal{F}_n : \mathcal{K}_n \times \mathcal{X}_n \to \mathcal{Y}_n$$

is a weak pseudorandom function (wPRF) if

- F(k, x) can be efficiently computed.
- F(k,.) (with a random key k ∈ K_n) cannot be efficiently distinguished from a uniformly random function R when queried on random inputs.

wPRFs are weaker primitives than PRFs, so relying on the security of a block-cipher like AES as a wPRF is more secure than assuming it to be a PRF.

Let C be a circuit with oracle gates, such that for any

$$F: \mathcal{K} \times \{0,1\}^n \rightarrow \{0,1\}^n$$

we have

$$\textbf{\textit{C}}_{\textbf{\textit{F}}}: \mathcal{K}^{\textbf{\textit{t}}} \times \{0,1\}^{n'} \rightarrow \{0,1\}^{n \cdot \textbf{\textit{e}}}$$

Let C be a circuit with oracle gates, such that for any

$$F: \mathcal{K} \times \{0,1\}^n \rightarrow \{0,1\}^n$$

we have

$$\textbf{\textit{C}}_{\textbf{\textit{F}}}: \mathcal{K}^{\textit{t}} \times \{0,1\}^{\textit{n'}} \rightarrow \{0,1\}^{\textit{n} \cdot \textbf{e}}$$

▶ *t* is the key expansion factor of *C*.

Let C be a circuit with oracle gates, such that for any

$$F: \mathcal{K} \times \{0,1\}^n \rightarrow \{0,1\}^n$$

we have

$$\textbf{\textit{C}}_{\textbf{\textit{F}}}: \mathcal{K}^{\textit{t}} \times \{0,1\}^{\textit{n'}} \rightarrow \{0,1\}^{\textit{n} \cdot \textbf{e}}$$

- t is the key expansion factor of C.
- e is the range expansion factor of C.

Let C be a circuit with oracle gates, such that for any

$$\textbf{\textit{F}}:\mathcal{K}\times\{0,1\}^n\to\{0,1\}^n$$

we have

$$\pmb{C_{F}}: \mathcal{K}^{\textit{t}} \times \{0,1\}^{\textit{n'}} \rightarrow \{0,1\}^{\textit{n} \cdot \textit{e}}$$

- t is the key expansion factor of C.
- e is the range expansion factor of C.

Definition

C is a secure range extension for PRFs, if for any PRFs F, also C_F is PRF.

Let C be a circuit with oracle gates, such that for any

$$\textbf{\textit{F}}:\mathcal{K}\times\{0,1\}^n\to\{0,1\}^n$$

we have

$$\pmb{C_{F}}: \mathcal{K}^{\textit{t}} \times \{0,1\}^{\textit{n'}} \rightarrow \{0,1\}^{\textit{n} \cdot \textit{e}}$$

- t is the key expansion factor of C.
- e is the range expansion factor of C.

Definition

C is a secure range extension for wPRFs, if for any wPRFs *F*, also C_F is wPRF.

applications

For a wPRF *F* and a secure expansion *C*, (*Enc*, *Dec*) as below is a secure encryption scheme. Enc(k, M): sample *X* at random and output

 $(C_F(k, X) \oplus M, X)$ Dec(k, (C, X)): output $C_F(k, X) \oplus C$.

applications

For a wPRF F and a secure expansion C, (*Enc*, *Dec*) as below is a secure encryption scheme.

Enc(k, M): sample X at random and output $(C_F(k, X) \oplus M, X)$

Dec(k, (C, X)): output $C_F(k, X) \oplus C$.

Overhead just one block. Key length depends on the key-expansion of C_F .

example 1: parallel evaluation

$C_{\mathcal{F}}(\{k_1,\ldots,k_t\},X)=\mathcal{F}(k_1,X),\ldots,\mathcal{F}(k_t,X)$

example 1: parallel evaluation

$C_{F}(\{k_1,\ldots,k_t\},X)=F(k_1,X),\ldots,F(k_t,X)$

+ Secure range extension for PRF and wPRF.

example 1: parallel evaluation

$C_{\mathcal{F}}(\{k_1,\ldots,k_t\},X)=\mathcal{F}(k_1,X),\ldots,\mathcal{F}(k_t,X)$

- + Secure range extension for PRF and wPRF.
- Range expansion = Key expansion (very low).

$$C_F(k, X) = F(k, X || [0]), \dots, F(k, X || [e - 1])$$

$$e = 2^z, X \in \{0, 1\}^{n-z}$$

[*i*] is binary representation of [*i*] padded to length *z*.

$$C_F(k, X) = F(k, X || [0]), \dots, F(k, X || [e - 1])$$

$$e = 2^z, X \in \{0, 1\}^{n-z}$$

[*i*] is binary representation of [*i*] padded to length *z*.

+ Just one key.

$$C_F(k, X) = F(k, X || [0]), \dots, F(k, X || [e - 1])$$

$$e = 2^z, X \in \{0, 1\}^{n-z}$$

[*i*] is binary representation of [*i*] padded to length *z*.

- + Just one key.
- + Secure range extension for PRF.

$$C_F(k, X) = F(k, X || [0]), \dots, F(k, X || [e - 1])$$

$$e = 2^z, X \in \{0, 1\}^{n-z}$$

[*i*] is binary representation of [*i*] padded to length *z*.

- + Just one key.
- + Secure range extension for PRF.
- Not Secure range extension for wPRF. E.g. for a wPRF where F(k, X || [0]) = F(k, X || [1]).

Definition

Let
$$s = \{s_1, \ldots, s_e\}$$
, each $s_i \in \{1, \ldots, t\}^*$. Define

$$C_F^{\mathrm{s}}(k_1,\ldots,k_t,X)=Y_1,\ldots,Y_e$$

where Y_i is computed by applying F on input X sequentially as defined by s_i , i.e. with $m = |s_i|$

$$Y_i = F(k_{s_i[m]}, F(k_{s_i[m-1]}, \dots, F(k_{s_i[1]}, X) \dots))$$

Definition

Let
$$s = \{s_1, \ldots, s_e\}$$
, each $s_i \in \{1, \ldots, t\}^*$. Define

$$C_F^{\mathrm{s}}(k_1,\ldots,k_t,X)=Y_1,\ldots,Y_e$$

where Y_i is computed by applying F on input X sequentially as defined by s_i , i.e. with $m = |s_i|$

$$Y_i = F(k_{s_i[m]}, F(k_{s_i[m-1]}, \dots, F(k_{s_i[1]}, X) \dots))$$

All known (efficient) secure range expansion for wPRFs are of this form (like in the previous talk).

Definition

Let
$$s = \{s_1, \ldots, s_e\}$$
, each $s_i \in \{1, \ldots, t\}^*$. Define

$$C_F^{\mathrm{s}}(k_1,\ldots,k_t,X)=Y_1,\ldots,Y_e$$

where Y_i is computed by applying F on input X sequentially as defined by s_i , i.e. with $m = |s_i|$

$$Y_i = F(k_{s_i[m]}, F(k_{s_i[m-1]}, \dots, F(k_{s_i[1]}, X) \dots))$$

All known (efficient) secure range expansion for wPRFs are of this form (like in the previous talk). For which s is C^s a secure range expansion for wPRFs?

Which of $C^{[12,2]}$, $C^{[11,22]}$, $C^{[12,21]}$ is a secure range extension for wPRFs?

Which of $C^{[12,2]}$, $C^{[11,22]}$, $C^{[12,21]}$ is a secure range extension for wPRFs?

• $C^{[12,2]}$ is secure via a black-box reduction.

Which of $C^{[12,2]}$, $C^{[11,22]}$, $C^{[12,21]}$ is a secure range extension for wPRFs?

• $C^{[12,2]}$ is secure via a black-box reduction.

• $C^{[11,22]}$ is not secure via a black-box reduction.

Which of $C^{[12,2]}$, $C^{[11,22]}$, $C^{[12,21]}$ is a secure range extension for wPRFs?

- $C^{[12,2]}$ is secure via a black-box reduction.
- $C^{[11,22]}$ is not secure via a black-box reduction.
- C^[12,21] cannot be proven secure nor insecure via a black-box reduction.

 C^α, α ⊂ N* is good if the security of C^α (as range expansion for wPRFs) can be proven via a black-box reduction.

- C^α, α ⊂ N* is good if the security of C^α (as range expansion for wPRFs) can be proven via a black-box reduction.
- C^α is bad if there is a black-box construction G, such that for any F
 - If F is a wPRF, so is G^F .
 - $C_{G^F}^{\alpha}$ is not a wPRF.

- C^α, α ⊂ N* is good if the security of C^α (as range expansion for wPRFs) can be proven via a black-box reduction.
- C^α is bad if there is a black-box construction G, such that for any F
 - If F is a wPRF, so is G^F .
 - $C_{G^F}^{\alpha}$ is not a wPRF.
- C^{α} is ugly if it's not good and not bad.

- C^α, α ⊂ N* is good if the security of C^α (as range expansion for wPRFs) can be proven via a black-box reduction.
- C^α is bad if there is a black-box construction G, such that for any F
 - If F is a wPRF, so is G^F .
 - $C_{G^F}^{\alpha}$ is not a wPRF.
- C^{α} is ugly if it's not good and not bad.

We completely classify C^{α} (as good, bad or ugly) by simple properties of α .

Theorem (Complete Classification)

 $\mathbf{C}^{lpha}, lpha = \{\mathbf{s}_1, \dots, \mathbf{s}_t\}$ is

- bad if α contains a string with two consecutive identical letters or two identical strings.
- good if it's not bad and whenever a letter c appears before a letter d in some s ∈ α, then d does not appear before c in any string s' ∈ α.
- ugly if it's not good nor bad.

Theorem (Complete Classification)

 $\mathbf{C}^{lpha}, lpha = \{\mathbf{s}_1, \dots, \mathbf{s}_t\}$ is

- bad if α contains a string with two consecutive identical letters or two identical strings.
- good if it's not bad and whenever a letter c appears before a letter d in some s ∈ α, then d does not appear before c in any string s' ∈ α.
- ugly if it's not good nor bad.

We sketch the proof only for our three special cases:

ugly

good bad

The Good: Security via Black-Box Reduction

 S_3

 S_2

S₁

• $S_0 \rightarrow S_1$ safe replacement.

 S_0

- $S_1 \rightarrow S_2$ safe replacement.
- $\Delta_q^{ extsf{KPA}}(S_2,S_3) \leq q^2/| extsf{Range}|$

The Bad: Black-Box Counterexample

For a pseudorandom permutation* G define H^G :

- if X = 0...0 then $H^{G}(k, X) = 0...0$
- Otherwise, let $Y = {}_{L}Y ||_{R}Y = G^{-1}(k, X)$.

$$\mathsf{H}^{\mathsf{G}}(X) = \begin{cases} 0 \dots 0 & \text{if }_{L} Y = 0 \dots 0 \\ \mathsf{G}(k, 0 \dots 0 \|_{R} X) & \text{otherwise} \end{cases}$$

Lemma

 $H^{G}(k,.)$ is a wPRF but $H^{G}(k,H^{G}(k,.))$ is not.

$$X \longrightarrow H^{G}(k, .) \longrightarrow 0 \dots 0$$
$$G(k, 0 \dots 0 ||_{R}X)$$

*A PRP can be constructed from a wPRF via a black-box reduction (GMM then Luby-Rackoff)

To prove that $C^{[12,21]}$ is ugly, we must show it's not good and not bad.

 If C^[12,21] was good, then its security can be proven via a black-box reduction.

- If C^[12,21] was good, then its security can be proven via a black-box reduction.
- ► A black-box reduction holds relative to any oracle.

- If C^[12,21] was good, then its security can be proven via a black-box reduction.
- ► A black-box reduction holds relative to any oracle.
- So to show C^[12,21] is not good we must come up with an oracle O such that
 - relative to \mathcal{O} wPRFs $F^{\mathcal{O}}$ exist
 - $C_{F^{\mathcal{O}}}^{[12,21]}$ is not a wPRF.

- If C^[12,21] was good, then its security can be proven via a black-box reduction.
- ► A black-box reduction holds relative to any oracle.
- So to show C^[12,21] is not good we must come up with an oracle O such that
 - relative to \mathcal{O} wPRFs $F^{\mathcal{O}}$ exist
 - $C_{F^{\mathcal{O}}}^{[12,21]}$ is not a wPRF.
- Similarly, to show C^[12,21] is not bad we must come up with an oracle 𝒪 such that relative to 𝒪 C^[12,21]_{F^Q} is a wPRF for any wPRF F^𝒪.

To prove that $C^{[12,21]}$ is ugly, we must show it's not good and not bad.

- If C^[12,21] was good, then its security can be proven via a black-box reduction.
- ► A black-box reduction holds relative to any oracle.
- So to show C^[12,21] is not good we must come up with an oracle O such that
 - relative to \mathcal{O} wPRFs $F^{\mathcal{O}}$ exist
 - $C_{F^{O}}^{[12,21]}$ is not a wPRF.

 \mathcal{O} will be a generic group oracle.

Similarly, to show C^[12,21] is not bad we must come up with an oracle 𝒪 such that relative to 𝒪 C^[12,21]_{F^Q} is a wPRF for any wPRF F^𝒪. 𝒪 will be a PSPACE oracle.

The Ugly: Insecure under DDH

 $G = \langle g \rangle$: prime order cyclic group where DDH is hard, then for random $x \in \mathbb{Z}_{|G|}$ $a \xrightarrow{F(x, .)} a^x$

is a wPRF, but $C_{F}^{[12,21]}$

is not!

 A weak Quasirandom function is the information theoretical analog of wPRFs.

- A weak Quasirandom function is the information theoretical analog of wPRFs.
- Using the "random systems framework" we show that any ugly C^α is a secure range extension for QRFs.

- A weak Quasirandom function is the information theoretical analog of wPRFs.
- Using the "random systems framework" we show that any ugly C^α is a secure range extension for QRFs.
- Relative to a PSPACE oracle, no computational hardness exists, so all wPRFs are QPRs.

- A weak Quasirandom function is the information theoretical analog of wPRFs.
- Using the "random systems framework" we show that any ugly C^α is a secure range extension for QRFs.
- Relative to a PSPACE oracle, no computational hardness exists, so all wPRFs are QPRs.

Relative to a PSPACE oracle, any ugly C^{α} is a secure range extension for wPRFs.

Questions?