non-trivial black-box combiners for collision-resistant hash-functions don't exist

Krzysztof Pietrzak (CWI Amsterdam)

Eurocrypt May 21 2007

black-box combiners [H05,HKNRR05,PM06,BB06]

C is a secure combiner for XXX¹, if $C^{A,B}$ is a secure implementation of XXX if *either A* or *B* is a secure implementation of XXX.

¹put your favorite primitve here

example 1: symmetric encryption

$C^{ENC_1, ENC_2}([K_1, K_2], M) = ENC_2(K_2, ENC_1(K_1, M))$

example 2: one way functions

$$C^{F_1,F_2}(X_1,X_2) = F_1(X_1) \| F_2(X_2)$$

example 3: bike

example 4: collision resistant hashing

$C^{H_1,H_2}(M) = H_1(M) \| H_2(M)$

Combined primitives have a twice as large keyspace (ENC,bike), input length (OWF) or output length (OWF & CRHF) compared to the underlying primitive.

Combined primitives have a twice as large keyspace (ENC,bike), input length (OWF) or output length (OWF & CRHF) compared to the underlying primitive.

do there exist combiners for CRHF with short output?

Let

$$C^{H_1,H_2}(M) = H_1(M) \| H_2(M)$$

but with the last output bit removed.

Let

$$C^{H_1,H_2}(M) = H_1(M) \| H_2(M) \|$$

but with the last output bit removed.

• Let $H_1, H_2 : \{0, 1\}^* \rightarrow \{0, 1\}^v$ be uniformly random.

Let

$$C^{H_1,H_2}(M) = H_1(M) \| H_2(M)$$

but with the last output bit removed.

- Let $H_1, H_2 : \{0, 1\}^* \rightarrow \{0, 1\}^v$ be uniformly random.
- Let $M \neq M'$ be such that

1.
$$C^{H_1,H_2}(M) = C^{H_1,H_2}(M')$$

2. $H_2(M) \neq H_2(M')$ (i.e. they differ in the last bit)

Let

$$C^{H_1,H_2}(M) = H_1(M) \| H_2(M)$$

but with the last output bit removed.

- Let $H_1, H_2 : \{0, 1\}^* \rightarrow \{0, 1\}^v$ be uniformly random.
- Let $M \neq M'$ be such that 1. $C^{H_1,H_2}(M) = C^{H_1,H_2}(M')$ 2. $H_2(M) \neq H_2(M')$ (i.e. they differ in the last bit)

Such a (M, M') "is of no use" to find a collision for H_2 :

 $Pr[find coll. in H_2 given M, M' with q queries]$

= Pr[find collision in URF: $\{0, 1\}^* \rightarrow \{0, 1\}^{\nu}$] $\leq q^2/2^{\nu+1}$

ignoring even a single bit in

$$C^{H_1,H_2}(M) = H_1(M) \| H_2(M)$$

breaks the combiner completely!

ignoring even a single bit in

$$C^{H_1,H_2}(M) = H_1(M) \| H_2(M)$$

breaks the combiner completely!

Maybe there's a more "clever" combiner!

$$C^{H_1,H_2}(M) = H_1(M) \| H_2(M)$$

breaks the combiner completely!

- Maybe there's a more "clever" combiner!
- ▶ No, there isn't... But first some definitions.

oracle circuit $C: \{0,1\}^m \rightarrow \{0,1\}^n$ oracle TM $P: \{0,1\}^{2m} \rightarrow \{0,1\}^*$

$$egin{aligned} & \textit{Adv}_{P}(\textit{H}_{1},\textit{H}_{2},\textit{M},\textit{M}') \,=\, \Pr_{\textit{P's coins}}[\textit{P}^{\textit{H}_{1},\textit{H}_{2}}(\textit{M},\textit{M}')
ightarrow (\textit{X},\textit{X}',\textit{Y},\textit{Y}'); \ & H_{1}(\textit{X}) = H_{1}(\textit{X}') \land H_{2}(\textit{Y}) = H_{2}(\textit{Y}')] \end{aligned}$$

Definition (BB Combiner for CRHFs)

(C, P) is an ϵ -secure combiner for CRHFs if for all

$$\textit{H}_{1},\textit{H}_{2}:\{0,1\}^{*}\rightarrow \{0,1\}^{m}$$

and all $M \neq M'$ where

$$C^{H_1,H_2}(M) = C^{H_1,H_2}(M')$$

we have $Adv_P(H_1, H_2, M, M') \ge 1 - \epsilon$

the Boneh-Boyen impossibility result

Theorem (Boneh-Boyen, crypto'06)

For any (C, P)

 $\boldsymbol{C}: \{0,1\}^m \to \{0,1\}^n \qquad \boldsymbol{P}: \{0,1\}^{2n} \to \{0,1\}^*$

where $C^{A,B}$ queries A and B exactly once if C is shrinking (i.e. m > n) and n < 2v then there exist

$$H_1: \{0,1\}^* \to \{0,1\}^v \qquad H_2: \{0,1\}^* \to \{0,1\}^v$$

and $M \neq M' : C^{H_1,H_2}(M) = C^{H_1,H_2}(M')$ with

 $Adv_P(H_1, H_2, M, M') \le q^2/2^{\nu+1}$

Where q is the # of oracle queries made by P.

more than one query won't help either

Theorem

For any (C, P), where C, P make q_C, q_P oracle queries $C: \{0,1\}^m \to \{0,1\}^n \qquad P: \{0,1\}^{2n} \to \{0,1\}^*$ if m > n and $n < 2v - 2\log(q_c)$, then there exist $H_1: \{0,1\}^* \to \{0,1\}^v \qquad H_2: \{0,1\}^* \to \{0,1\}^v$ and $M \neq M'$: $C^{H_1,H_2}(M) = C^{H_1,H_2}(M')$ with $Adv_P(H_1, H_2, M, M') \leq (q_C + q_P)^2 / 2^{\nu+1}$

► Have to come up with an oracle O, which on input C comes up with H₁, H₂ and M, M' s.t.

1.
$$C^{H_1,H_2}(M) = C^{H_1,H_2}(M')$$

2. given M, M' at least one of the H_i 's is a CRHF.

- ► Have to come up with an oracle O, which on input C comes up with H₁, H₂ and M, M' s.t.
 - 1. $C^{H_1,H_2}(M) = C^{H_1,H_2}(M')$
 - 2. given M, M' at least one of the H_i 's is a CRHF.
- Show that random H₁, H₂, M, M' statisfy 1. and 2. with non-zero probability. "satisfying 2." means, that the oracle queries made in the computation of C^{H₁,H₂}(M), C^{H₁,H₂}(M') do not contain collisions for H₁ and H₂.

for m > n and $n < 2v - 2\log(q_C)$ consider any

$$\boldsymbol{C}:\{0,1\}^m\to\{0,1\}^n$$

For $H_1, H_2 : \{0, 1\}^* \to \{0, 1\}^v$ and $M, M' \in \{0, 1\}^m$ define the predicates

$$\mathcal{E}_1 \iff \mathcal{C}^{\mathcal{H}_1,\mathcal{H}_2}(M) = \mathcal{C}^{\mathcal{H}_1,\mathcal{H}_2}(M') \land M
eq M'$$

 $\mathcal{E}_2 \iff$ the computation of $C^{H_1,H_2}(M), C^{H_1,H_2}(M')$ contains collisions for H_1 and H_2 .

proof sketch cont.

$$\mathcal{E}_1 \quad \Longleftrightarrow \quad C^{H_1,H_2}(M) = C^{H_1,H_2}(M') \wedge M
eq M'$$

$$\mathcal{E}_2 \iff \text{computation of } \mathbf{C}^{H_1,H_2}(M) = \mathbf{C}^{H_1,H_2}(M')$$

contains collisions for H_1 and H_2

Lemma (main technical)

For radom H_1, H_2 and M, M' we have $Pr[\mathcal{E}_1] > Pr[\mathcal{E}_2]$ and thus $Pr[\mathcal{E}_1 \land \neg \mathcal{E}_2] > 0$

proof sketch cont.

$$\mathcal{E}_1 \quad \Longleftrightarrow \quad C^{H_1,H_2}(M) = C^{H_1,H_2}(M') \wedge M
eq M'$$

$$\mathcal{E}_2 \iff \text{computation of } \mathbf{C}^{H_1,H_2}(M) = \mathbf{C}^{H_1,H_2}(M')$$

contains collisions for H_1 and H_2

Lemma (main technical)

For radom H_1, H_2 and M, M' we have $Pr[\mathcal{E}_1] > Pr[\mathcal{E}_2]$ and thus $Pr[\mathcal{E}_1 \land \neg \mathcal{E}_2] > 0$

This implies that there exist H_1 , H_2 and M, M' such that \mathcal{E}_1 and $\neg \mathcal{E}_2$, i.e. M, M' is a collision for C^{H_1,H_2} , but does not give collisions for H_1 and H_2 (the theorem follows easily from that).

proof sketch of main technical lemma

Lemma (main technical)

For radom H_1, H_2 and M, M' we have $Pr[\mathcal{E}_1] > Pr[\mathcal{E}_2]$

Proof.

$$\Pr[\mathcal{E}_1] \ge \Pr[C^{H_1, H_2}(M) = C^{H_1, H_2}(M')] - \Pr[M = M'] \ge 2^{-n} - 2^{-m}$$

Let \mathcal{X}_i denote the inputs to H_i during the computation of $C^{H_1,H_2}(M), C^{H_1,H_2}(M')$.

$$\Pr[\mathcal{E}_2] = \bigwedge_{i=1,2} \Pr[\exists X \neq X' \in \mathcal{X}_i : H_i(X) = H_i(X')]$$

 $\leq \max_{\mathcal{Y}_1, \mathcal{Y}_2, |\mathcal{Y}_1| + |\mathcal{Y}_2| = q_C} \Pr[\prod_{i=1,2} \exists Y \neq Y' \in \mathcal{Y}_i : H_i(X) = H_i(X')]]$

$$\leq (q_C^2/2^{\nu+1})^2 < 2^{-n} - 2^{-m} \leq \Pr[\mathcal{E}_1]$$

if you really want a combiner with short output...

a proposition

Secure if H_1 or H_2 and H_3 is a CRHF.

- Secure if H_1 or H_2 and H_3 is a CRHF.
- Seems pointless, if we have to assume that H₃ is secure, why not simply use H₃ to hash M?

- Secure if H_1 or H_2 and H_3 is a CRHF.
- Seems pointless, if we have to assume that H₃ is secure, why not simply use H₃ to hash M?
- In H₃(H₁(M) || H₂(M)), the H₃ is invoked on a short input. So we can use inefficient provably secure H₃.

- Secure if H_1 or H_2 and H_3 is a CRHF.
- Seems pointless, if we have to assume that H₃ is secure, why not simply use H₃ to hash M?
- In H₃(H₁(M) || H₂(M)), the H₃ is invoked on a short input. So we can use inefficient provably secure H₃.
- Say $H_3(a, b) = g^a h^b$ (finding a collision for H_3 is as hard as discrete log).

$$M
ightarrow g^{H_1(M)} h^{H_2(M)}$$