
non-trivial black-box combiners for
collision-resistant hash-functions

don’t exist

Krzysztof Pietrzak (CWI Amsterdam)

Eurocrypt May 21 2007



black-box combiners
[H05,HKNRR05,PM06,BB06]

C is a secure combiner for XXX1, if CA,B is a secure
implementation of XXX if either A or B is a secure
implementation of XXX.

1put your favorite primitve here



example 1: symmetric encryption

CENC1,ENC2([K1, K2], M) = ENC2(K2, ENC1(K1, M))

K1 K2

M ENC1 ENC2



example 2: one way functions

CF1,F2(X1, X2) = F1(X1)‖F2(X2)

X1 X2

F1 F2



example 3: bike



example 4: collision resistant hashing

CH1,H2(M) = H1(M)‖H2(M)

M

H1 H2



Combined primitives have a twice as large keyspace
(ENC,bike), input length (OWF) or output length (OWF &
CRHF) compared to the underlying primitive.

K1 K2

M ENC1 ENC2

X1 X2

F1 F2

M

H1 H2



Combined primitives have a twice as large keyspace
(ENC,bike), input length (OWF) or output length (OWF &
CRHF) compared to the underlying primitive.

K1 K2

M ENC1 ENC2

X1 X2

F1 F2

M

H1 H2

do there exist combiners for CRHF with short output?



first try: ignore some bit in the output

◮ Let
CH1,H2(M) = H1(M)‖H2(M)

but with the last output bit removed.



first try: ignore some bit in the output

◮ Let
CH1,H2(M) = H1(M)‖H2(M)

but with the last output bit removed.
◮ Let H1, H2 : {0, 1}∗ → {0, 1}v be uniformly random.



first try: ignore some bit in the output

◮ Let
CH1,H2(M) = H1(M)‖H2(M)

but with the last output bit removed.
◮ Let H1, H2 : {0, 1}∗ → {0, 1}v be uniformly random.
◮ Let M 6= M ′ be such that

1. CH1,H2(M) = CH1,H2(M ′)
2. H2(M) 6= H2(M ′) (i.e. they differ in the last bit)



first try: ignore some bit in the output

◮ Let
CH1,H2(M) = H1(M)‖H2(M)

but with the last output bit removed.
◮ Let H1, H2 : {0, 1}∗ → {0, 1}v be uniformly random.
◮ Let M 6= M ′ be such that

1. CH1,H2(M) = CH1,H2(M ′)
2. H2(M) 6= H2(M ′) (i.e. they differ in the last bit)

Such a (M, M ′) “is of no use” to find a collision for H2:

Pr[find coll. in H2 given M, M ′ with q queries]

= Pr[ find collision in URF:{0, 1}∗ → {0, 1}v ] ≤ q2/2v+1



first try: ignore some bit in the output

ignoring even a single bit in

CH1,H2(M) = H1(M)‖H2(M)

breaks the combiner completely!



first try: ignore some bit in the output

ignoring even a single bit in

CH1,H2(M) = H1(M)‖H2(M)

breaks the combiner completely!

◮ Maybe there’s a more “clever” combiner!



first try: ignore some bit in the output

ignoring even a single bit in

CH1,H2(M) = H1(M)‖H2(M)

breaks the combiner completely!

◮ Maybe there’s a more “clever” combiner!
◮ No, there isn’t... But first some definitions.



oracle circuit C : {0, 1}m → {0, 1}n

oracle TM P : {0, 1}2m → {0, 1}∗

AdvP(H1, H2, M, M ′) = PrP’s coins[PH1,H2(M, M ′) → (X , X ′, Y , Y ′);

H1(X ) = H1(X ′) ∧ H2(Y ) = H2(Y ′)]

Definition (BB Combiner for CRHFs)

(C, P) is an ǫ-secure combiner for CRHFs if for all

H1, H2 : {0, 1}∗ → {0, 1}m

and all M 6= M ′ where

CH1,H2(M) = CH1,H2(M ′)

we have AdvP(H1, H2, M, M ′) ≥ 1 − ǫ



the Boneh-Boyen impossibility result

Theorem (Boneh-Boyen, crypto’06)

For any (C, P)

C : {0, 1}m → {0, 1}n P : {0, 1}2n → {0, 1}∗

where CA,B queries A and B exactly once
if C is shrinking (i.e. m > n) and n < 2v then there exist

H1 : {0, 1}∗ → {0, 1}v H2 : {0, 1}∗ → {0, 1}v

and M 6= M ′ : CH1,H2(M) = CH1,H2(M ′) with

AdvP(H1, H2, M, M ′) ≤ q2/2v+1

Where q is the # of oracle queries made by P.



more than one query won’t help either

Theorem
For any (C, P), where C, P make qC, qP oracle queries

C : {0, 1}m → {0, 1}n P : {0, 1}2n → {0, 1}∗

if m > n and n < 2v − 2 log(qC), then there exist

H1 : {0, 1}∗ → {0, 1}v H2 : {0, 1}∗ → {0, 1}v

and M 6= M ′ : CH1,H2(M) = CH1,H2(M ′) with

AdvP(H1, H2, M, M ′) ≤ (qC + qP)2/2v+1



proof idea

◮ Have to come up with an oracle O, which on input C
comes up with H1, H2 and M, M ′ s.t.

1. CH1,H2(M) = CH1,H2(M ′)
2. given M, M ′ at least one of the Hi ’s is a CRHF.



proof idea

◮ Have to come up with an oracle O, which on input C
comes up with H1, H2 and M, M ′ s.t.

1. CH1,H2(M) = CH1,H2(M ′)
2. given M, M ′ at least one of the Hi ’s is a CRHF.

◮ Show that random H1, H2, M, M ′ statisfy 1. and 2.
with non-zero probability. “satisfying 2.” means, that
the oracle queries made in the computation of
CH1,H2(M), CH1,H2(M ′) do not contain collisions for H1

and H2.



proof sketch

for m > n and n < 2v − 2 log(qC) consider any

C : {0, 1}m → {0, 1}n

For H1, H2 : {0, 1}∗ → {0, 1}v and M, M ′ ∈ {0, 1}m define
the predicates

E1 ⇐⇒ CH1,H2(M) = CH1,H2(M ′) ∧ M 6= M ′

E2 ⇐⇒ the computation of CH1,H2(M), CH1,H2(M ′) contains
collisions for H1 and H2.



proof sketch cont.

E1 ⇐⇒ CH1,H2(M) = CH1,H2(M ′) ∧ M 6= M ′

E2 ⇐⇒ computation of CH1,H2(M) = CH1,H2(M ′)

contains collisions for H1 and H2

Lemma (main technical)

For radom H1, H2 and M, M ′ we have Pr[E1] > Pr[E2] and
thus Pr[E1 ∧ ¬E2] > 0



proof sketch cont.

E1 ⇐⇒ CH1,H2(M) = CH1,H2(M ′) ∧ M 6= M ′

E2 ⇐⇒ computation of CH1,H2(M) = CH1,H2(M ′)

contains collisions for H1 and H2

Lemma (main technical)

For radom H1, H2 and M, M ′ we have Pr[E1] > Pr[E2] and
thus Pr[E1 ∧ ¬E2] > 0

This implies that there exist H1, H2 and M, M ′ such that E1

and ¬E2, i.e. M, M ′ is a collision for CH1,H2, but does not
give collisions for H1 and H2 (the theorem follows easily
from that).



proof sketch of main technical lemma

Lemma (main technical)

For radom H1, H2 and M, M ′ we have Pr[E1] > Pr[E2]

Proof.
Pr[E1] ≥ Pr[CH1,H2(M) = CH1,H2(M ′)]−Pr[M = M ′] ≥ 2−n−2−m

Let Xi denote the inputs to Hi during the computation of
CH1,H2(M), CH1,H2(M ′).

Pr[E2] =
∧

i=1,2

Pr[∃X 6= X ′ ∈ Xi : Hi(X ) = Hi(X ′)]

≤ max
Y1,Y2,|Y1|+|Y2|=qC

Pr[
∏

i=1,2

∃Y 6= Y ′ ∈ Yi : Hi(X ) = Hi(X ′)]]

≤ (q2
C/2v+1)2 < 2−n − 2−m ≤ Pr[E1]



if you really want a combiner with short
output...

a proposition



M

H1 H2

H3

◮ Secure if H1 or H2 and H3 is a CRHF.



M

H1 H2

H3

◮ Secure if H1 or H2 and H3 is a CRHF.
◮ Seems pointless, if we have to assume that H3 is

secure, why not simply use H3 to hash M?



M

H1 H2

H3

◮ Secure if H1 or H2 and H3 is a CRHF.
◮ Seems pointless, if we have to assume that H3 is

secure, why not simply use H3 to hash M?
◮ In H3(H1(M)‖H2(M)), the H3 is invoked on a short

input. So we can use inefficient provably secure H3.



M

H1 H2

H3

◮ Secure if H1 or H2 and H3 is a CRHF.
◮ Seems pointless, if we have to assume that H3 is

secure, why not simply use H3 to hash M?
◮ In H3(H1(M)‖H2(M)), the H3 is invoked on a short

input. So we can use inefficient provably secure H3.
◮ Say H3(a, b) = gahb (finding a collision for H3 is as

hard as discrete log).

M → gH1(M)hH2(M)


