

A Stochastic Approach in Side-Channel Analysis in the Presence of Masking

W. Schindler

Bundesamt für Sicherheit in der Informationstechnik (BSI), Bonn, Germany

Barcelona, May 22, 2007

- r (Classical) template attacks: most powerful attack, but gigantic workload (= # of measurements) for profiling
- r Second order DPA: no profiling, but only little efficient

The Stochastic Approach (Example: Power attack on AES)

- $x \in \{0,1\}^8$ (known) part or the plaintext or ciphertext
- $z \in \{0,1\}^8$ masking value
- $\mathbf{k} \in \{0,1\}^8$ subkey
- t time

signal at time t

Time t:
$$I_t(x,z;k) = h_t(x,z;k) + R_t$$
Random variable
(depends on x,z,k) \uparrow Random variable
(depends on x,z,k) \land Random variable
(depends on x,z,k) $Random variable $E(R_t) = 0$ Quantifies the random-
ness of the side-channelNoise$

r Naïve Approach: Estimate h_t(x,z;k) = E (I_t(x,z;k)) independently for each triple (x,z;k) ∈ {0,1}⁸ × {0,1}⁸ × {0,1}⁸ for all t ∈ { t₁,t₂,...,t_m } (relevant instants)

r Drawback: Gigantic number of measurements

- r For any fixed subkey k interpret the function $h_{t:k}(\cdot,\cdot): \{0,1\}^8 \times \{0,1\}^8 \rightarrow R, \ h_{t:k}(\cdot,\cdot) = h_t(\cdot,\cdot;k),$ as an element of a real vector space F.
- **r** Approximate $h_{t:k}(\cdot, \cdot)$ by its image $h_{t:k}^*$ under the orthogonal projection onto a suitably chosen lowdimensional vector subspace $F_{u:t}$

geometric visualization

r (clou) The image $h^*_{t;k}$ minimizes a functional on the vector subspace $F_{u;t}$

h^{*}_{t:k} can be determined without knowing h (.,.,.k)

- **r** (Qualitative) conjectures on the reasons for the leakage signal \rightarrow subspace $F_{u:t}$
- r Typical vector space dimensions (→ Example) r dim(F) = 2¹⁶

$$r \dim(F_{u;t}) = 9 \text{ or } 17$$

Non-masking case:

- r introduced by Schindler, Lemke, Paar (CHES 2005)
- r extensive experimental studies by Gierlichs, Lemke, Paar (CHES 2006)
 - Compared to template attacks:
 reduces the number of measurements in the profiling phase up to factor 50

Masking case:

The advantages of the stochastic approach are even by an order of magnitude larger than in the nonmasking case.

The stochastic approach

- r reduces the profiling workload by order(s) of magnitude
- **r** combines engineer's insight into the reasons for the leakage (\rightarrow suitability of the subspace $F_{u;t}$) with precise stochastic methods (\rightarrow optimal approximator in $F_{u;t}$)
- r identifies and quantifies those properties that have significant impact on the side-channel signal
- r supports constructively the design of security implementations

Bundesamt für Sicherheit in der Informationstechnik

Contact

Bundesamt für Sicherheit in der Informationstechnik (BSI)

Werner Schindler Godesberger Allee 185-189 53175 Bonn

Tel: +49 (0)3018-9582-5652 Fax: +49 (0)3018-10-9582-5652

Werner.Schindler@bsi.bund.de www.bsi.bund.de www.bsi-fuer-buerger.de

A Stochastic Model for Particular Designs of Physical RNGs with Robust Entropy Estimators

Wolfgang Killmann¹, Werner Schindler²

¹ T-Systems GEI GmbH Bonn, Germany ² Bundesamt für Sicherheit in der Informationstechnik (BSI) Bonn, Germany

Barcelona, May 22, 2007

Summary

r Goal: Determine the conditional entropy

 $H(R_{n+1} | R_1, ..., R_n)$

- r We formulated and analysed a stochastic model of the noise source.
- r We derived robust entropy estimators, yielding practically useful lower entropy bounds.

Practical experiments:

 10^{5} random bits / sec (limitations by the USB interface) entropy / random bit > 1 - 10^{-5}

Bundesamt für Sicherheit in der Informationstechnik

Contact

Wolfgang Killmann T-Systems, GEI GmbH, Bonn, Germany wolfgang.killmann@t-systems.com

Werner Schindler Bundesamt für Sicherheit in der Informationstechnik (BSI), Bonn, Germany Werner.Schindler@bsi.bund.de