Key-Dependent Message Security in the Standard Model

Dennis Hofheinz (CWI, Amsterdam)

What and why?

- Key-dependent message (KDM) security
- As IND, but with special encryption oracle

 Real game:
 O(F) = ENC_{SK}(F(SK))
 Random game:
 O(F) = ENC_{SK}(random)
- Security: no adv. can distinguish real/rand
- Useful: formal link, encrypt your hard drive
- Our focus: symmetric setting and CPA

What is known?

- Black, Shrimpton, Rogaway 2002:
 ENC_{SK}(M) = (R, H(SK||R) + M)
- KDM-CPA in RO model, but RO essential
- **Only*** provable construction known!
- * except for straightforward but uninteresting solutions:
 - schemes with secret key longer than total volume of messages ever encrypted (then privacy amplification techniques work)
 - "hey, look how easy the proof now is"-style interactive non-standard computational assumptions beyond intuition

What do we have?

Stateful encryption assuming PRNG only

 $ENC_{SK_i}(M)$:

- 1.) pick UHF h
- 2.) cond := $h(SK_i)$
- 3.) $(SK_{i+1}, pad) := PRNG(cond)$
- 4.) C := (h, pad + M)
- Weak stateful KDM-CPA (i.e., M=M(SK_i))