

CPK: Bounded Identity Based Encryption

James Hughes Guan Zhi

Identity Based Encryption

- Private matrix to the domain
- Private key to the user
- Public matrix
- Originally described as ECC based system
 - > Equally valid in discrete log
- Does not require a bilinear map
- Patented
 - > Publication Number WO/2006/074611
 - >NAN, XiangHao
 - >CHEN, Zhong

System Parameters

- Diffie Hellman group with values (g, p)
- A matrix size (m, n)
- A selection of row values are calculated from identity
 - $> h_{1...m} = f(Identity)$
 - > Public function
 - > SHA-256 or known encryption

Secret Matrix

$$S = egin{bmatrix} s_{1,1} & \cdots & s_{1,m} \ dots & \ddots & dots \ s_{n,1} & \cdots & s_{n,m} \end{bmatrix}$$
 Private to domain

Secret Key

$$S = egin{bmatrix} s_{1,1} & \cdots & s_{1,m} \\ \vdots & \ddots & \vdots \\ s_{n,1} & \cdots & s_{n,m} \end{bmatrix}$$
 $S_A = \sum_{i=1}^m s_{h(i),i} \mod p - 1$

$$S_A = \sum_{i=1}^m s_{h(i),i} \mod p - 1$$

Private to user

Public Matrix

$$S = \begin{bmatrix} s_{1,1} & \cdots & s_{1,m} \\ \vdots & \ddots & \vdots \\ s_{n,1} & \cdots & s_{n,m} \end{bmatrix}$$
 $S_A = \sum_{i=1}^m s_{h(i),i} \mod p - 1$

$$S_A = \sum_{i=1}^m s_{h(i),i} \mod p - 1$$

Private to user

$$p_{i,j} = g^{s_{i,j}} \mod p$$

$$P = \begin{bmatrix} p_{1,1} & \cdots & p_{1,m} \\ \vdots & \ddots & \vdots \\ p_{n,1} & \cdots & p_{n,m} \end{bmatrix}$$

Public to domain

Public Key

$$S = egin{bmatrix} s_{1,1} & \cdots & s_{1,m} \\ \vdots & \ddots & \vdots \\ s_{n,1} & \cdots & s_{n,m} \end{bmatrix}$$
 $S_A = \sum_{i=1}^m s_{h(i),i} \mod p - 1$

$$S_A = \sum_{i=1}^m s_{h(i),i} \mod p - 1$$

Private to user

$$p_{i,j} = g^{s_{i,j}} \mod p$$

$$P = \begin{bmatrix} p_{1,1} & \cdots & p_{1,m} \\ \vdots & \ddots & \vdots \\ p_{n,1} & \cdots & p_{n,m} \end{bmatrix} \quad P_A = \prod_{i=1}^m P_{h(i),i} \mod p$$

$$P_A = \prod_{i=1}^m P_{h(i),i} \mod p$$

Public to domain

Questions

- Secure?
 - > Public matrix reduces to the DDH
- Collisions?
 - > 32x32 then h is 32x5 or 160 bits
 - > Birthday after 280 accounts
- Collusion
 - > of near collision (one column different) provides difference
 - > 32x32 requires ~1300 private keys.

Collusion Environment

- Without the threat of Collusion
 - Verification and not signature
 - > Small matrix
- Without the threat of large scale collusion
 - > Non personal equipment
 - > Medium Matrix
- With the threat of large scale collusion
 - > Authentication module (Chip card, USB token, TPM)
 - > Large matrix
- Special Situations
 - > One to ten million collusion partners
 - > Ultra Large Matrix

- Is this novel?
 - > Boneh Franklin
 - > Murakami
 - > Cocks
 - > Heng, Kurosawa, CR-RSA 2004
 - > Dodis, Katz, Xu, Yung, EC 2002
- Contact Jim or Guan later....