Cryptographic and Physical Zero-Knowledge Proof Systems for Solutions of Sudoku Puzzles

To be presented in FUN in Algorithms 2007

Benny Pinkas Joint work with Ronen Gradwohl, Moni Naor and Guy Rothblum

Sudoku

		8		1		7	6		
	3							1	
			6		4			2	
3			1						
	4	5	7		2	1	9		All rights reserved
					2 6			5	All rights
2 4			9		5				d 2007
4							2		Sudoku L
	9	1		6		4			(c) Daily Suddku Ltd 2007.
Daily S	Daily SuDoku: Tue 1-May-2007						very hard		

Can be generalized to an $n \times n$ grid, where $n=k^2$.

Here, k=3, n=9.

The question

 How to convince someone that you solved a Sudoku puzzle, without revealing the solution.

• In other words, prove that

- There is a solution to the puzzle
- You know the solution
- But do this without revealing the solution.
- In other words: ZK proofs of knowledge for Sudoku.

Related Work [NNR]

• Where is Waldo?

ZK proofs for Sudoku

Sudoku is in NP (in fact, it is NP Complete)
So why bother designing special proofs?

- Direct ZK proofs for Sudoku are preferable:
 - Efficiency
 - Practicality: Implementable without the aid of computers
 - Understandability (by non-experts!): Ensure that participants have intuitive understanding of the proof.
- Our Results
 - Cryptographic solutions: two machines exchange messages. Security based on computational assumptions.
 - Physical solutions: Implementable by humans without involving computers.

A demo of a Physical ZK protocol for Sudoku

		8		1		7	6		
	3							1	
			6		4			2	
3			1						
	4	5	7		2	1	9		reserved
					2 6			5	All rights
2 4			9		5				td 2007
4							2		Suddau L
	9	1		6		4			(c) Daily Sudoku Ltd 2007. All rights reserved
Daily \$	Daily SuDoku: Tue 1-May-2007 very hard								

Benny Pinkas

Analysis

Completeness: perfect.

- Soundness: If Prover doesn't know a solution, then it cannot answer at least one of the verifier's 3 choices.
 - Cheating probability ("Soundness error"): 2/3 (might be too high)

Zero-knowledge:

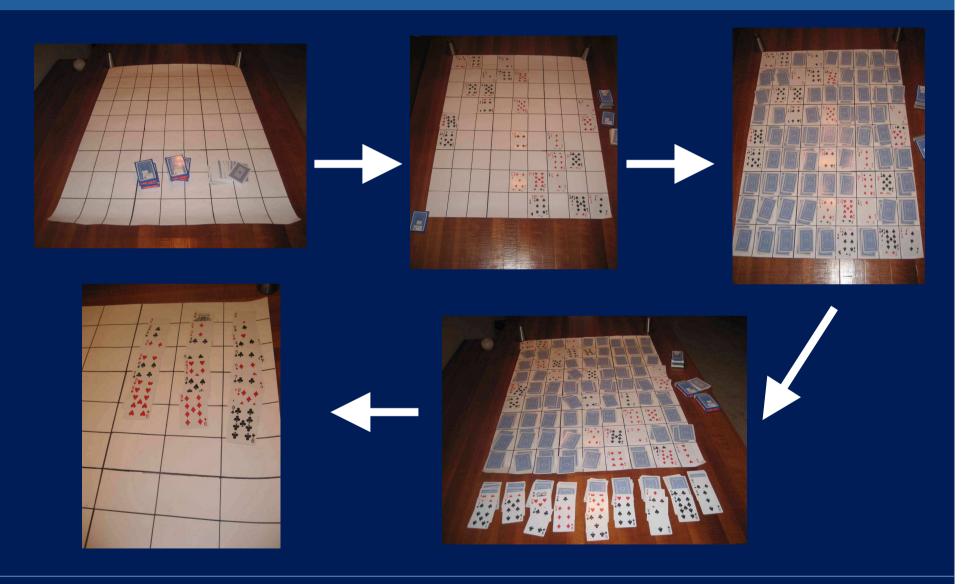
- Obviously you didn't learn anything from what you saw.
- This property can be defined and analyzed.
- Knowledge extractor:
 - Can be defined and analyzed (not hard).

We describe several physical protocols

 The protocols use playing cards, or scratchoff cards.

- Possible criteria:
 - Number of cards
 - Number of shuffles
 - Soundness error

# of cards	shuffles	soundness error
	n	2/3
3n ²	3n	1/9
3n ²	C-1	1/9+8/(9c)
n (3n) <mark>special</mark> cards	3n	0
	n ² 3n ² 3n ² n (3n) special	n ² n 3n ² 3n 3n ² c-1 n (3n) special 3n


We describe several physical protocols

 The protocols use playing cards, or scratchoff cards.

- Possible criteria:
 - Number of cards
 - Number of shuffles
 - Soundness error

	# of cards	shuffles		soundness error	
Protocol 1: "one card per cell"	n ² 81	n	9	2/3	
Protocol 2: "all packets"	3n ² 243	3n	27	1/9	
Protocol 3: "aggregate packets"	3n ² 243	C-1) 3	1/9+8/(9c)	
Protocol 4: "triplicate"	n <mark>special</mark> cards	3n	27	0	

Protocol 2 (using decks of cards) http://www.wisdom.weizmann.ac.il/~naor/PAPERS/SUDOKU_DEMO

Discussion

A good way to explain zero-knowledge for kids?

• Open problems:

- Protocols over the mail?
 - [MN] showed how to implement commitments from scratch-off cards.
 - However, an amplification stage requires many repetitions
 - Not easy for humans
- Non-interactive proofs (by the puzzle creator) [Berson]

- Other puzzles?