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Motivation
• Homomorphism-based computation cheap and useful.
• Key generation the limiting factor.
• Broadcast not feasible.
• Result: Trade slight chance of failure for performance.
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Outline
• Motivation
• Security model
• Threshold Cryptography Refresher
• Polynomial-based Key Generation
• Matrix-based Key Generation
• Sparse matrix-based Key Generation
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Security Model
• Reliable point-to-point links.
• No broadcast channel (implement with Byzantine

Agreement).
• Static adversary.
• Common stream of randomness.
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Discrete Log Threshold Cryptography
• n players: P1, . . . , Pn.
• Each player has a share of the private key x.
• Any t + 1 able to sign or decrypt.
• Public keys g, gx known to everyone.
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Key Generation with a Dealer
• Dealer chooses degree t polynomial.

(any t + 1 evaluation points allows for interpolation)
• Distribute f(i) to Pi.
• Define the secret to be x = f(0).
• With t + 1 players we know f(1), f(2), . . . , f(t + 1).
• Interpolate to find f(0).
• Compromising dealer will reveal key!
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Requirements for DKG

Fewer than t adversarially controlled players.
Correctness:

(C1) All subsets of t + 1 shares provided by honest players
define the same unique secret key x.

(C2) All honest parties have the same value of the public
key y = gx mod p, where x is the unique secret
guaranteed by (C1).

(C3) x is uniformly distributed in Zq (and hence y is
uniformly distributed in the subgroup generated by g).

Secrecy:

(S1) The adversary can learn no information about x
except for what is implied by the value y = gx mod p.
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Polynomial DKG

Pedersen91, GJKR99
• Each player, Pi, picks random degree t polynomial, fi.
• Pi commits to the coefficients of fi.
• Pi shares fi(j) with Pj.

• Define global secret poly f(·) ,
∑

{i|i is valid}
fi(·).

• The secret key is f(0).
• Any t + 1 players can find fi and hence f .
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Efficiency of Polynomial DKG

For t = n/2, player Pi must:
• send O(n) point-to-point messages.
• broadcast O(n) commitments.

• receive O(n2) messages.
• check validity of n shares.
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Polynomials as Matrices

The Vandermonde matrix makes polynomial evaluation the
same as matrix multiplication.
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
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Premultiplying by row vector of coefficients yields row
vector of evaluations.

10



Intuition
• What if Pi broadcasts to a much smaller group?
• Call this group Qi, the checking group for Pi.

• For n−κ chance of failure, need |Qi| = Ω(κ log n).

• Only n−κ+1 chance of failure for all groups.
• What about Pi’s secret?
• Shared with only Θ(log n) players.
• If more than Θ(log n) degrees of freedom, recovery

impossible.
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Requirements for DKG

With high probability, for threshold γ:

(C1) All shares provided by honest players define the
same unique secret key x, or no key at all.

(C2) All honest parties have the same value of the public
key y = gx mod p, where x is the unique secret
guaranteed by (C1).

(C3) x is uniformly distributed in Zq (and hence y is
uniformly distributed in the subgroup generated by g).

(C4) Almost all subsets of (γ + ε)n players can recover the
key.

(S1) An adversary who corrupts fewer than (γ − ε)n players
can learn no information about x except for what is
implied by the value y = gx mod p.
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Sparse Secret, Sparse Matrix

Each secret has k consecutive non-zero elements.

X

=

secret

shares

• Premultiply by secret, get vector of ∼ 2k non-zero
shares.

• Sum of secrets is the global secret.
• Sum of shares are shares of global secret.
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Missing Shares

If only a subset of the shares can be used:

X

=

secret

shares

• Secret must still satisfy this smaller set of linear
constraints.

• Are there enough to find the secret?
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Recovery

When is recovery possible?
• Each column of the evaluation matrix represents one

player’s share.
• The sum of all players’ secrets can be recovered if the

submatrix has full rank.

Proof sketch
• Construct non-singular matrix incrementally as

columns added.
• Failure if no more non-zero elements in a given row.
• We have ` chances to get a non-zero element.

• 1

2
+ ε chance of getting any given column.

• Process identical to a reflecting random walk.
15



In practice (Band width)

For ε = 1/10:
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In practice (Group size)

For ε = 1/10:
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What do we get?
• Broadcast to only Θ(log n).
• Checking only Θ(log n) other players.
• Slight chance of failure.
• Not as sharp threshold.
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