
Sequential Aggregate
Signatures from

Trapdoor Permutations
Anna Lysyanskaya, Leonid Reyzin, Silvio Micali,

and Hovav Shacham

Non-sequential
Aggregates [BGLS03]

Related to BLS short signatures [BLS01]

Instantiated using bilinear map

Sign Aggregate

Mn

M2

M1

.
.
.

.
.
.

σ1

σ2

σn

.
.
.

σ

U1 :

U2 :

Un :

Aggregate Signatures
[BGLS03]

A single short aggregate provides
nonrepudiation for many different messages
under many different keys

More general than multisignatures

Applications:

X.509 certificate chains

Secure BGP route attestations

PGP web of trust

Verisign

Versign Europe

NatWest

NatWest WWW

Sequential Aggregates

Signing and Aggregation are a single operation

Inherently sequenced; not appropriate for PGP

Can be instantiated using RSA

Sign and Aggregate

Mn

M2

M1

.
.
.

.
.
.

σ1

σ2

σn

.

.

.

U1 :

U2 :

Un :

Sequential Aggregate
Chosen-Key Model

Nontriviality:

σ* is a valid sequential aggregate
challenge key pk = pkj* for some j;

No oracle query at pk1*,…,pkj*;M1*,…,Mj*.

Adversary
AggSign() oracle

pk

sk

σ
′

σ∗
; !M∗

; !pk
∗

σ; !M‖M; !pk‖pk

Trapdoor Permutations

A permutation family Π over D:

Generate: (s,t) ← Gen

Evaluate: π(⋅) = Eval(s,⋅): D→D

Invert: π-1(⋅) = Invert(s,t,⋅): D→D

Here, D is a group over some operation ∗.

Trapdoor Permutation
Features

One-way: hard to invert without trapdoor t.

Homomorphic: each π is a permutation over some
group operation × (not necessarily the same as ∗)

Claw-free [GMR88]: hard to find claw (x,y) s.t.
π(x)=g(y) (where g is an additional permutation of D)

Certified [BY96]: easy to tell whether a given s
corresponds to a valid permutation (s,t).

Full-domain Hash
Signatures [BR93,C00]
Use random oracle hash H: {0,1}*→D

Signature scheme:

Key Generation: (PK,SK) = (s,t) ← Gen

Sign M∈{0,1}*:
 h←H(M)∈D; σ←Invert(s,t,h)∈D

Verify σ: h←H(M)∈D; check Eval(s,σ) = h.
Secure if Π is one way;
better reduction if Π is homomorphic.

Trapdoor Sequential
Aggregate Signatures
Key gen for each user: (s,t)←Gen

Aggregate Sign M under (s,t),
along with σ on M1, …, Mi under s1, …, si:
 verify that σ is valid;
 h←H(M1, …, Mi,M, s1, …, si,s);
 σ’←Invert(s, t, h∗σ).

Verify σ on M1, …, Mi under s1, …, si:
 for j = i,…,1 do:
 σj-1 ← Eval(sj,σj) ∗ H(M1,…,Mj,s1,…,sj)

-1

 accept if 1 = σ1.

h3

π
−1

3
(·)

h2

π
−1

2
(·)

π
−1

1
(·)

h1✓

Let hi = H(M1,…,Mi,s1,…,si) for each i

Then:

An Example

σ1 = π
−1

1
(h1)

σ2 = π
−1

2
(h2 · π

−1

1
(h1))

σ3 = π
−1

3
(h3 · π

−1

2
(h2 · π

−1

1
(h1)))

Trapdoor Aggregate
Signature Security

Theorem: Secure (in random-oracle model)
against existential forgery in the sequential
aggregate chosen-key model if Π is a
certified, one-way permutation family.

Theorem: Better reduction if Π is claw-free.

Instantiating With RSA

Each user has N=pq, along with e⋅d = 1 (φ(N))

Pub key (N,e), priv key (N,d); π(x) = xe, π-1(x) = xd.

Problems:

domain is ZN*, not ZN;

RSA not certified: can’t tell if (N,e) well-formed;

N is different for each user.

Not just a “proof problem”!

Certifying RSA

Extend π(⋅) to ZN :

define π(x) = x when gcd(x,N) ≠ 1

Use + as group operation: σ’←(h+σ)d
(× is still used in security proof)

Certify (N,e):

require e > N and prime,
so gcd(e, φ(N)) = 1. [CMS99]

Dealing with Ns
It can happen that σi > Ni+1. Two solutions:

Require N1 < N2 < … < Nn.

Require that each Ni be k bits long;
output overflow bit 1 when σi > Ni+1, 0 otherwise
(aggregate grows by one bit per signature).

This generalizes: if keys are within 2t factor
of each other, output t extra bits per
aggregation step.

Conclusions

An aggregate signature provides
nonrepudiation on many messages by many
keys

Sequential aggregates are inherently
sequenced; signing and aggregation are a
single operation

Can instantiate using RSA;
requires making RSA a certified permutation

