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Non-sequential 
Aggregates [BGLS03]

Related to BLS short signatures [BLS01]

Instantiated using bilinear map
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Aggregate Signatures 
[BGLS03]

A single short aggregate provides 
nonrepudiation for many different messages 
under many different keys

More general than multisignatures

Applications:

X.509 certificate chains

Secure BGP route attestations

PGP web of trust

Verisign

Versign Europe

NatWest

NatWest WWW



Sequential Aggregates

Signing and Aggregation are a single operation

Inherently sequenced; not appropriate for PGP

Can be instantiated using RSA
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Sequential Aggregate 
Chosen-Key Model

Nontriviality:

σ* is a valid sequential aggregate
challenge key pk = pkj* for some j;

No oracle query at pk1*,…,pkj*;M1*,…,Mj*.
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Trapdoor Permutations

A permutation family Π over D:

Generate: (s,t) ← Gen

Evaluate:  π(⋅) = Eval(s,⋅): D→D

Invert:    π-1(⋅) = Invert(s,t,⋅): D→D

Here, D is a group over some operation ∗.



Trapdoor Permutation 
Features

One-way: hard to invert without trapdoor t.

Homomorphic: each π is a permutation over some 
group operation × (not necessarily the same as ∗)

Claw-free [GMR88]: hard to find claw (x,y) s.t. 
π(x)=g(y) (where g is an additional permutation of D)

Certified [BY96]: easy to tell whether a given s 
corresponds to a valid permutation (s,t).



Full-domain Hash 
Signatures [BR93,C00]
Use random oracle hash H: {0,1}*→D

Signature scheme:

Key Generation: (PK,SK) = (s,t) ← Gen

Sign M∈{0,1}*:
    h←H(M)∈D; σ←Invert(s,t,h)∈D

Verify σ: h←H(M)∈D; check Eval(s,σ) = h.
Secure if Π is one way;
better reduction if Π is homomorphic.



Trapdoor Sequential 
Aggregate Signatures
Key gen for each user: (s,t)←Gen

Aggregate Sign M under (s,t),
along with σ on M1, …, Mi under s1, …, si:
    verify that σ is valid;
    h←H(M1, …, Mi,M, s1, …, si,s);
     σ’←Invert(s, t, h∗σ).

Verify σ on M1, …, Mi under s1, …, si:
    for j = i,…,1 do:
        σj-1 ← Eval(sj,σj) ∗ H(M1,…,Mj,s1,…,sj)

-1

    accept if 1 = σ1.
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Let hi = H(M1,…,Mi,s1,…,si) for each i

Then:

An Example
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Trapdoor Aggregate 
Signature Security

Theorem:  Secure (in random-oracle model) 
against existential forgery in the sequential 
aggregate chosen-key model if Π is a 
certified, one-way permutation family.

Theorem: Better reduction if Π is claw-free.



Instantiating With RSA 

Each user has N=pq, along with e⋅d = 1 (φ(N))

Pub key (N,e), priv key (N,d);  π(x) = xe, π-1(x) = xd.

Problems:

domain is ZN*, not ZN;

RSA not certified: can’t tell if (N,e) well-formed;

N is different for each user.

Not just a “proof problem”!



Certifying RSA

Extend π(⋅) to ZN :

define π(x) = x when gcd(x,N) ≠ 1

Use + as group operation:  σ’←(h+σ)d
(× is still used in security proof)

Certify (N,e):

require e > N and prime,
so gcd(e, φ(N)) = 1.  [CMS99]



Dealing with Ns
It can happen that σi > Ni+1.  Two solutions:

Require N1 < N2 < … < Nn.

Require that each Ni be k bits long;
output overflow bit 1 when σi > Ni+1, 0 otherwise
(aggregate grows by one bit per signature).

This generalizes: if keys are within 2t factor 
of each other, output t extra bits per 
aggregation step.



Conclusions

An aggregate signature provides 
nonrepudiation on many messages by many 
keys

Sequential aggregates are inherently 
sequenced; signing and aggregation are a 
single operation

Can instantiate using RSA;
requires making RSA a certified permutation


