Sequential Aggregate
Signatures from
Trapdoor Permutations

Anna Lysyanskaya, Leonid Reyzin, Silvio Micali,
and Hovav Shacham

Non-sequential
Aggregates [BGLSO3]

Sign Aggregate
U;: My > 0]
U, : My > 02 \O_
vl o

@ Related to BLS short signatures [BLSO1]

@ Instantiated using bilinear map

Aggregate Signatures
[BGLSO3]

@ A single short aggregate provides
nonrepudiation for many different messages
under many different keys

@ More general than multisignatures

@ Applications:
® X.509 certificate chains
® Secure BGP route attestations

® PGP web of trust

Sequential Aggregates

Sign and Aggregate

U:: M > 07
L1° M1 \>‘Gz

£ R =5

: : '\
Lot = IViER o

@ Signing and Aggregation are a single operation
@ Inherently sequenced; not appropriate for PGP

@ Can be instantiated using RSA

Sequential Aggregate
Chosen-Key Model
s 03 M||M; pk||pk

e

sk

Nontriviality:
® 0¥ is a valid sequential aggregate

o challenge key pk = pk * for some j;

o No oracle query at pk¥....pk. ;M ... M *

Trapdoor Permutations

® A permutation family 1 over D:
& Generate: (s,t) « Gen
@ Evaluate: 1(:) = Eval(s,’): DD
@ Invert: 1l() = Invert(s,t‘): D—D

@ Here, D Is a group over some operation .

Trapdoor Permutation
Features

@ One-way: hard to invert without trapdoor ft.

@ Homomorphic: each 1 is a permutation over some
group operation X (not necessarily the same as *)

@ Claw-free [GMR88]: hard to find claw (x,y) s.t.
m(x)=g(y) (where g is an additional permutation of D)

@ Certified [BY96]: easy to tell whether a given s
corresponds to a valid permutation (s,t).

Full-domain Hash
Signatures [BR93,C00]

@ Use random oracle hash H: {0,1}*—D
@ Signature scheme:
@ Key Generation: (PK,SK) = (s,t) « Gen

@ Sign Me{0,1}*:
he—H(M)eD; o« Invert(s,th)eD

@ Verify 0: h«H(M)eD; check Eval(s,0) = h.

@ Secure if [l is one way;
better reduction if [1 is homomorphic.

Trapdoor Sequential
Aggregate Signatures

@ Key gen for each user: (s,t)<—Gen

@ Aggregate Sign M under (s,1),
along with 0 on M,, ..., M. under s, ..., s:

verify that o is valid;
heHM,, .., MM, s, ..., 5.5);

o' +Invert(s, t, h*o).

o Verify 0 on M, .., M. under s, .., s:

|
for j =1i,..,1 do:
Of Eval(sj,(TJ.) % H(I\/\l,---,l\/\j,sl,---,SJ-)'1

accept if 1 = 0.

An Example

o Let h = I-I(Ml,...,Mi,sl,...,si) for each |

@ Then:
O ' ()
gy = m, ' (hy -7 ' (hy))

o3 = 73 (h3- -7, (hy- 77 (h)))

Trapdoor Aggregate
Signature Security

® Theorem: Secure (in random-oracle model)
against existential forgery in the sequential
aggregate chosen-key model if I1 is a
certified, one-way permutation family.

@ Theorem: Better reduction if Il is claw-free.

Instantiating With RSA

@ Each user has N=pq, along with e-d =1 (¢(N))
@ Pub key (N,e), priv key (N,d); m(x) = x&, m(x) = x°.

@ Problems:

%

o domain is ZN ¢

not Z;
@ RSA not certified: cant tell if (N,e) well-formed;

® N is different for each user.

@ Not just a “proof problem”!

Certifying RSA

o Extend m(:) fo Z:

@ define m(x) = x when gcd(x,N) # 1

@ Use + as group operation: & +(h+0)?
(X is still used in security proof)

o Certify (N,e):

@ require e > N and prime,
so gcd(e, ©(N)) = 1. [CMS99]

Dealing with Ns

It can happen that 0. > N. .. Two solutions:

@ Require N, < N, < ... < N_.

n

o Require that each N. be k bits long;

output overflow bit 1 when 0. > N. ,, O otherwise

i+1/

(aggregate grows by one bit per signature).

@ This generalizes: if keys are within 2" factor
of each other, output t extra bits per
aggregation step.

Conclusions

@ An aggregate signature provides
nonrepudiation on many messages by many
keys

@ Sequential aggregates are inherently
sequenced; signing and aggregation are a
single operation

@ Can instantiate using RSA;
requires making RSA a certified permutation

