
Obfuscation:
Positive Results and Techniques

   Benjamin Lynn     Manoj Prabhakaran   Amit Sahai 
          Stanford University                       Princeton University               Princeton University

EUROCRYPT '04



Obfuscation

 Hide the internals of a program/circuit

 Still give complete access to the functionality

 Obfuscate and handover the code



Obfuscation

 Privacy, intellectual property protection, ...

 Numerous cryptographic applications

 Widespread interest

 Many proposed schemes



Definition?

 Introduced in [BGIRSVY'01] 

 Cryptographic perspective: semantic security 
against “efficient” adversaries

 Intuition: Obfuscated code doesn't reveal 
anything more than what access to the    
functionality does



Definition
A family of functions F is obfuscatable if:

There is O such that for all F.exe in F , 

 O(F.exe) = ob_F.exe has same behaviour  as      
   F.exe

 ob_F.exe is at most polynomially slower/bigger  
   than F.exe

 Virtual Blackbox Property



Virtual Blackbox

For every adversary A there is a “simulator” S 
such that for all F.exe  in F , what A can find 
out about F from ob_F.exe, S can find out just 
from blackbox access to F.

|  Pr[A(ob_F.exe)=1]  - Pr[SF=1] | <  negl



Impossibility of Obfuscation
[ BGIRSVY'01 ]

 There are unobfuscatable functions:  in par-
ticular there are no universal obfuscators

 Unobfuscatable cryptographic schemes

 Low-complexity (TC0) unobfuscatable      
functions 



Possibility of Obfuscation?

 If “learnable” then trivially obfuscatable

 May be obfuscators for many individual 
functions of interest 

 At least one non-trivial obfuscation?



Compositions?

 Suppose F and G obfuscatable

 { f(g(x)) | f in F, g in G } obfuscatable?

 In particular, Fk obfuscatable?

 Not necessarily!



Impossibility of Composition

 Depth 1 threshold circuits:                              
                             trivially obfuscatable

 But constant depth threshold circuits (TC0) 
can be unobfuscatable!



Reductions

 If F “reduces to” G  and  G obfuscatable 
then F also obfuscatable

 “Blackbox reductions”: given any obfuscator 
for G give one for F in a blackbox manner



Why Reductions?

 Easier constructions and proofs

 If G obfuscated “in hardware”, still can be 
used to obfuscate F

 Theoretical interest: New connections       
between classes of functions



This Work

 Introduces relevant notions of reduction

 Reductions of some complex families to a   
simpler family (“point functions”)

 Obfuscation of point functions in the      
“Random Oracle” model



F < G

  There are two PPT oracle-machines M and N 
such that for every F in  F  there is a G in G 

such that MG = F and NF=G



Using the Reduction

 Lemma: 

   If F < G and G obfuscatable 

then F obfuscatable



Proof: Intuition

 ob_F.exe = Mob_G.exe

 Ensure that giving ob_G.exe is OK: 

 Giving  ob_G.exe is “like” giving blackbox     
access to G

 Giving blackbox access to G is not more than  
giving blackbox access to F, because G = NF 



Proof: Sketch

 ob_F.exe = Mob_G.exe

 For every adversary A which takes 
ob_F.exe show a  “simulator” SF  
 Consider A' which takes ob_G.exe, constructs 

ob_F.exe and calls A on that. 

 Consider S': behaves like A', but needs oracle   
access to G 

 SF: run  S' with access to NF



Using Reductions

 A simple family G and a complex family F

 Show F < G

 Show how to obfuscate G (G non-trivial) 

 Lemma gives obfuscation of F



Simple families

 P the family of point functions:                        
   Pa(x) = 1 iff x=a  

 Q  point functions with output:                          
    Pa,b(x) = b iff x=a

 Q*  multi-point functions with output:               
     PA,B(x) = Bi iff x=Ai 



A more complex family

 A Complex Access Control Mechanism:        

An unknown graph 
defining access to 
nodes 

Each edge has a 
password

 Start at start node

Exponentially many valid access patterns



Obfuscating it

 Ideally would like to provide blackbox access 
to the access controller/secrets in the nodes

 But what if the code is public?

 Keep the code obfuscated



Elements of the 
Obfuscation/proof

 Probabilistic family W: random keys to nodes

 ACM < W under an extended  definition of “<”

 From extended Lemma: if the family obtained 
by fixing the random tape of W in every way 
obfuscatable,  then ACM obfuscatable

 Fixing tape of W gives multi-point functions



Obfuscating point functions

 In the Random Oracle model

 RO a random function 

 Both obfuscator and adversary get oracle     
access to it

 ob_F.exe  may be different from F with       
negligible probability (over choice of RO)

 | Pr[ARO(ob_F.exe)=1] - Pr[SF=1]| < negl



Obfuscating point functions

 Point function Pa:  Store  RO(a)

 Point function with output Pa,b:  Choose r at 
random. Store r, RO1(r,a) and b+RO2(r,a)

 Multiple points: repeat above for each point 
with different r's



Some Other Obfuscations

 Public constant size regular expressions with 
secret strings

 Public regular expression with secret obfus-
catable languages, but giving access to the 
individual secret languages

 Neighbourhood checking on tree metrics



Obfuscations via Reductions

 All reductions to multi-point functions (or 
underlying obfuscatable functions)

 No further use of random oracles

 Useful if the multi-point function primitive 
can be obfuscated say on hardware



To explore...

 More obfuscations and reductions

 Algorithmic problems

 Obfuscations without random oracles

 More impossibilities?

 Alternate definitions?



Thank You!


