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Overview

• Algebraic attacks in general
• ... and on LFSR-based stream ciphers
• Scenarios 
• New criterion: Immunity against 

algebraic attacks
• Problems solved on algebraic immunity
• Conclusions



Algebraic attacks known against

• Public key ciphers:
Matsumoto-Imai (Patarin, 1995)
HFE (Faugère-Joux, 2003)

• Block ciphers:
AES, Serpent (Courtois-Pieprzyk, 2002)

• LFSR-based stream ciphers



Algebraic attack (Steps):

1. Set up system of equations:
Multivariate algebraic equations of some degree

System of equations, depends on cipher 

Involves plaintext, ciphertext and key

2. Solve system 
(Linearization, XL, Gröbner bases)

Complexity depends on degree of 
equations



Solving systems of algebraic equations 
known to be hard in general

Search for:

• Equations of low degree

• Overdefined systems of equations

Under these conditions, solving is quite 
efficient  
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Algebraic attacks on LFSR-based 
stream ciphers

Example: Linear sequence generator plus
combiner



System of Algebraic equations
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Is overdefined in known-plaintext attack.

However: Degree of equations too large.



Scenarios

Attempt: Lower degree of equations by 
multiplying combining function f with well 
chosen function g.

New result:  Two scenarios suffice

S1: There exist functions g and h of low 
degree such that f * g = h

S2: There exists function g of low degree 
such that f * g = 0



Known result (Eurocrypt’03)
For any Boolean function f with n inputs 
there is a nonzero Boolean function g of 
degree at most n/2 such that f * g is of 
degree at most n/2  

Use of scenarios:

If output bit bi = 0, use S1: f * g = h, i.e. get 
equation h(x) = 0

If output bit bi = 1, use S2: f * g = 0, i.e. get 
equation g(x) = 0



Consequence: Class of stream ciphers is 
prone to algebraic attacks that were immune 
to all previous attacks.

Countermeasure: Choose combining
function f with large number n of inputs, e. g., 
n = 32, to escape algebraic attacks.

But even then, no certainty whether no low 
degree multiples exist.

Contrast: Many stream ciphers proposed are 
provably secure against, e.g., Berlekamp-
Massey shift register synthesis algorithm



New measure: Immunity against 
algebraic attacks

Recall S1: There exist g and h of low 
degree such that f * g = h

As f2 = f in GF(2),

f2 * g = f* g=h, 

and also 

f2 * g = f * h. 

Hence f * h = h, or (f+1) * h = 0, i.e. we are in 
scenario S2, but for f+1 instead of f.



Notion: 
Function g is called an annihilator of f if 
f * g = 0.

New measure: 
Algebraic immunity, AI(f) of (combining) 
function f:

AI(f) is minimum value of d such that f or f+1
admits annihilator of degree d.



Problems on algebraic immunity

1. For given f, determine algebraic 
immunity of f

2. Probability that a random Boolean 
function has low algebraic immunity?

3. Classes of Boolean functions with low 
algebraic immunity?



Problem1
Known Algorithm for determining AI(f):

Assume f balanced. g of degree d < n/2. 

Is g annihilator of f ?

Necessary and sufficient for f * g=0 : 
g(x) = 0 for all x for which f(x) = 1.

1. Substitute all these x in ANF of g

2. Obtain linear system of equations for 
coefficients of ANF of g.

3. If no solution: Print AI(f) > d



Large number of equations: 2n-1

Complexity of solving: 23(n-1)

Infeasible if number of inputs of f not small
(e.g. if n = 32).

Idea: Equations are seen to have specific
structure.

Substitute x with f(x) = 1 in g(x) = 0, but with 
increasing weight, 

e.g. x=(0,0,...,0,1,0,...0), with 1 at i-th position. 



Then for constant term a0 and coefficients ak
of linear terms xk, in ANF (k=1,...,n), get linear 
equation

ai + a0 = 0

If x is of weight 2 and  f(x) = 1, get equation

aik + ai + ak + a0 = 0

More generally, for x of weight w <= d:
Only one coefficient of weight w does occur.

Use equation to express this coeff by coeff‘s 
of lower weight. 



Assume f random: 
Then for about half of arguments x, f(x)=1. 

Roughly half of the aik‘s can be expressed by 
coefficients of monomials of lower weight.

Reduces number of unknowns by factor 1/2.

Need additional equations: Choose random 
arguments x with f(x) = 1, until there are same 
number of equations as unknowns.

Solve system: Get reduction of complexity by 
factor 8.



Further improvements?

Use arguments x of weight w= d+1, d+2,...

E.g., for x of weight w=d+1, d+1 weight d
coeff‘s involved. 

For some fraction of favorable arguments
x, exactly d of these coeff‘s were already 
expressed by coeff‘s of lower weight.

Express remaining coeff by coeff‘s of 
lower weight as well.



Estimation of fraction of favorable arguments
x for general degree d and number n of inputs
of f shows:

This type of elimination of coeff‘s works well if 
d < 6, but will not work for d >= 6. 

Case d = 5, n = 32: Can reduce complexity of
solving linear equations from order 253 to
order 245.

For d < 5, reduction of complexity even larger.



1. If for combining function f (or f+1), an 
annihilator of degree d <= 4 is found by our
algorithm, stream cipher is prone to alge-
braic attack.

2. If f and f+1 are shown to have no annihi-
lators of degree d < 6, cipher has some 
immunity against algebraic attack: 
For d = 6, and for 128-bit key, computatio-
nal complexity of basic attack is of order 296.

Practical relevance of this result for realistic 
combiners (i.e., number n of inputs large):



Problem 2:
Probability that a random Boolean function

has low algebraic immunity 

Exact determination of algebraic immunity still 
not feasible if n >= 32 and d >= 6.

Derive several bounds on probability that 
random balanced function has AI(f) <= d.

Estimates partly use results from coding 
theory.



Asymptotic bound for random Boolean 
functions with n inputs:

There is a constant, c, c 0.22, such that for 
any sequence dn of positive integers with 
dn <= c * n,

Pb{AI(f) <= dn} goes to 0 as n goes to infinity

Bound gives good estimates already for
moderate n

≈



Result:
For random function f with large number n of 
inputs (e.g. n >= 18), low algebraic immunity 
is extremely unlikely.

31
10-107

26
10-23138

22 
10-6326

18 
10-1134

n 
Pb

d = 8d = 7d = 6d = 5

Pb: Probability that AI(f) <= d



Conclude: Low algebraic immunity of 
combining function in some stream ciphers 
not likely, but caused (presumably) by 

• Requirement of implementation to be
efficient

• Potential tradeoff between established
design criteria and new criterion of algebraic
immunity



Problem 3:
Boolean functions with relatively low 

algebraic immunity 

Tradeoff between new criterium of high 
algebraic immunity and established criteria?

Known criteria:
• Large algebraic degree (to counter

Berlekamp-Massey)

• Correlation immunity (to counter correlation
attacks)

• Large distance to affine functions



Degree optimized Maiorana-McFarland 
functions:

Satisfy several desirable criteria. However:

Functions in this class can have relatively low 
algebraic immunity.

Result is consequence of useful represen-
tation of annihilators of given function:

Annihilator viewed as concatenation of 
annihilators from smaller variable space.



Conclusions

• Efficient algorithm for determining algebraic
immmunity of Boolean functions:
Significant step towards provable security
against algebraic attacks.

• For random functions with many inputs:
Low algebraic immunity is very unlikely.

• Functions exist, with desirable properties, but 
with relatively low alg. immunity:
Suggests tradeoff between new and established
criteria.


