
Algebraic attacks and
decomposition of Boolean

functions

Willi Meier1 and Enes Pasalic2 and
Claude Carlet2

1 FH Aargau, Switzerland
2 INRIA, Rocquencourt, France

Overview

• Algebraic attacks in general
• ... and on LFSR-based stream ciphers
• Scenarios
• New criterion: Immunity against

algebraic attacks
• Problems solved on algebraic immunity
• Conclusions

Algebraic attacks known against

• Public key ciphers:
Matsumoto-Imai (Patarin, 1995)
HFE (Faugère-Joux, 2003)

• Block ciphers:
AES, Serpent (Courtois-Pieprzyk, 2002)

• LFSR-based stream ciphers

Algebraic attack (Steps):

1. Set up system of equations:
Multivariate algebraic equations of some degree

System of equations, depends on cipher

Involves plaintext, ciphertext and key

2. Solve system
(Linearization, XL, Gröbner bases)

Complexity depends on degree of
equations

Solving systems of algebraic equations
known to be hard in general

Search for:

• Equations of low degree

• Overdefined systems of equations

Under these conditions, solving is quite
efficient

state

non-linear
filter

linear
feedback

b0 , b1 , b2 , ...

Algebraic attacks on LFSR-based
stream ciphers

Example: Linear sequence generator plus
combiner

System of Algebraic equations

=

=

=

−

−

−

...................................

)),...,((

)),...,((

),...,(

210
2

110

010

bkkLf

bkkLf

bkkf

n

n

n

Is overdefined in known-plaintext attack.

However: Degree of equations too large.

Scenarios

Attempt: Lower degree of equations by
multiplying combining function f with well
chosen function g.

New result: Two scenarios suffice

S1: There exist functions g and h of low
degree such that f * g = h

S2: There exists function g of low degree
such that f * g = 0

Known result (Eurocrypt’03)
For any Boolean function f with n inputs
there is a nonzero Boolean function g of
degree at most n/2 such that f * g is of
degree at most n/2

Use of scenarios:

If output bit bi = 0, use S1: f * g = h, i.e. get
equation h(x) = 0

If output bit bi = 1, use S2: f * g = 0, i.e. get
equation g(x) = 0

Consequence: Class of stream ciphers is
prone to algebraic attacks that were immune
to all previous attacks.

Countermeasure: Choose combining
function f with large number n of inputs, e. g.,
n = 32, to escape algebraic attacks.

But even then, no certainty whether no low
degree multiples exist.

Contrast: Many stream ciphers proposed are
provably secure against, e.g., Berlekamp-
Massey shift register synthesis algorithm

New measure: Immunity against
algebraic attacks

Recall S1: There exist g and h of low
degree such that f * g = h

As f2 = f in GF(2),

f2 * g = f* g=h,

and also

f2 * g = f * h.

Hence f * h = h, or (f+1) * h = 0, i.e. we are in
scenario S2, but for f+1 instead of f.

Notion:
Function g is called an annihilator of f if
f * g = 0.

New measure:
Algebraic immunity, AI(f) of (combining)
function f:

AI(f) is minimum value of d such that f or f+1
admits annihilator of degree d.

Problems on algebraic immunity

1. For given f, determine algebraic
immunity of f

2. Probability that a random Boolean
function has low algebraic immunity?

3. Classes of Boolean functions with low
algebraic immunity?

Problem1
Known Algorithm for determining AI(f):

Assume f balanced. g of degree d < n/2.

Is g annihilator of f ?

Necessary and sufficient for f * g=0 :
g(x) = 0 for all x for which f(x) = 1.

1. Substitute all these x in ANF of g

2. Obtain linear system of equations for
coefficients of ANF of g.

3. If no solution: Print AI(f) > d

Large number of equations: 2n-1

Complexity of solving: 23(n-1)

Infeasible if number of inputs of f not small
(e.g. if n = 32).

Idea: Equations are seen to have specific
structure.

Substitute x with f(x) = 1 in g(x) = 0, but with
increasing weight,

e.g. x=(0,0,...,0,1,0,...0), with 1 at i-th position.

Then for constant term a0 and coefficients ak
of linear terms xk, in ANF (k=1,...,n), get linear
equation

ai + a0 = 0

If x is of weight 2 and f(x) = 1, get equation

aik + ai + ak + a0 = 0

More generally, for x of weight w <= d:
Only one coefficient of weight w does occur.

Use equation to express this coeff by coeff‘s
of lower weight.

Assume f random:
Then for about half of arguments x, f(x)=1.

Roughly half of the aik‘s can be expressed by
coefficients of monomials of lower weight.

Reduces number of unknowns by factor 1/2.

Need additional equations: Choose random
arguments x with f(x) = 1, until there are same
number of equations as unknowns.

Solve system: Get reduction of complexity by
factor 8.

Further improvements?

Use arguments x of weight w= d+1, d+2,...

E.g., for x of weight w=d+1, d+1 weight d
coeff‘s involved.

For some fraction of favorable arguments
x, exactly d of these coeff‘s were already
expressed by coeff‘s of lower weight.

Express remaining coeff by coeff‘s of
lower weight as well.

Estimation of fraction of favorable arguments
x for general degree d and number n of inputs
of f shows:

This type of elimination of coeff‘s works well if
d < 6, but will not work for d >= 6.

Case d = 5, n = 32: Can reduce complexity of
solving linear equations from order 253 to
order 245.

For d < 5, reduction of complexity even larger.

1. If for combining function f (or f+1), an
annihilator of degree d <= 4 is found by our
algorithm, stream cipher is prone to alge-
braic attack.

2. If f and f+1 are shown to have no annihi-
lators of degree d < 6, cipher has some
immunity against algebraic attack:
For d = 6, and for 128-bit key, computatio-
nal complexity of basic attack is of order 296.

Practical relevance of this result for realistic
combiners (i.e., number n of inputs large):

Problem 2:
Probability that a random Boolean function

has low algebraic immunity

Exact determination of algebraic immunity still
not feasible if n >= 32 and d >= 6.

Derive several bounds on probability that
random balanced function has AI(f) <= d.

Estimates partly use results from coding
theory.

Asymptotic bound for random Boolean
functions with n inputs:

There is a constant, c, c 0.22, such that for
any sequence dn of positive integers with
dn <= c * n,

Pb{AI(f) <= dn} goes to 0 as n goes to infinity

Bound gives good estimates already for
moderate n

≈

Result:
For random function f with large number n of
inputs (e.g. n >= 18), low algebraic immunity
is extremely unlikely.

31
10-107

26
10-23138

22
10-6326

18
10-1134

n
Pb

d = 8d = 7d = 6d = 5

Pb: Probability that AI(f) <= d

Conclude: Low algebraic immunity of
combining function in some stream ciphers
not likely, but caused (presumably) by

• Requirement of implementation to be
efficient

• Potential tradeoff between established
design criteria and new criterion of algebraic
immunity

Problem 3:
Boolean functions with relatively low

algebraic immunity

Tradeoff between new criterium of high
algebraic immunity and established criteria?

Known criteria:
• Large algebraic degree (to counter

Berlekamp-Massey)

• Correlation immunity (to counter correlation
attacks)

• Large distance to affine functions

Degree optimized Maiorana-McFarland
functions:

Satisfy several desirable criteria. However:

Functions in this class can have relatively low
algebraic immunity.

Result is consequence of useful represen-
tation of annihilators of given function:

Annihilator viewed as concatenation of
annihilators from smaller variable space.

Conclusions

• Efficient algorithm for determining algebraic
immmunity of Boolean functions:
Significant step towards provable security
against algebraic attacks.

• For random functions with many inputs:
Low algebraic immunity is very unlikely.

• Functions exist, with desirable properties, but
with relatively low alg. immunity:
Suggests tradeoff between new and established
criteria.

