Pseudo-random Exponentiation Using the Lim-Lee Method

C.P. Schnorr

Fachbereich Mathematik/Informatik
Universität Frankfurt, Germany
schnorr@cs.uni-frankfurt.de
Abstract for rump and poster session
Suppose we want to compute g^{R} for a pseudo-random n bit exponent R. We first divide R into h blocks R_{i}, for $0 \leq i \leq h-1$, of size $a=\left\lceil\frac{n}{h}\right\rceil$ and then subdivide each R_{i} into v smaller blocks $R_{i, j}$, for $0 \leq j \leq v-1$ of size $b=\left\lceil\frac{a}{v}\right\rceil$ with $R_{i, j}$ having bits $e_{i, j b+k}$ for $k=0, \ldots, b-1$. We have for $v h \mid n$:

$$
\begin{gathered}
R=R_{h-1} \ldots . . R_{1} R_{0}=\sum_{i=0}^{h-1} R_{i} 2^{i a}, \quad R_{i}=R_{0, v-1} \ldots . . R_{i, 1} R_{i, 0}= \\
\sum_{j=0}^{v-1} R_{i, j} 2^{j b}, \\
R_{i, j}=e_{i, j b+b-1} \ldots . . e_{i, j b+1} e_{i, j b}=\sum_{k=0}^{b-1} e_{i, j b+k} 2^{k}, \\
R=\sum_{k=0}^{b-1} \sum_{j=0}^{v-1} L_{j, k} 2^{k}, \text { where } L_{j, k}:=\sum_{i=0}^{h-1} e_{i, j b+k} 2^{i a+j b} .
\end{gathered}
$$

For each j and k there are 2^{h} combinations for the h bits $e_{i, j b+k}$ for $i=$ $0, \ldots, h-1$. For each j there are $2^{h}-1$ non-zero integers $\sum_{i=0}^{h-1} e_{i, j b+k} 2^{i a+j b}$. We select for each j a subset $\mathcal{L} \mid$ of $s \approx 2^{h / 2}-1$ of these integers. We precompute and store g^{L} for $L \in \mathcal{L}_{\mid}$for $j=0, \ldots, v-1$. Let $\mathcal{L}:=\sum_{\|=1}^{L-\infty} \sum_{\mid=1}^{\sqsubseteq-\infty} \mathcal{L}_{\mid} \in \|$. We generate random pairs in $\mathcal{L} \times\}^{\mathcal{L}}$:

Lim-LEE-pseudo-random exponentiation.
$Z:=1, L:=0$
for $k=b-1$ to 0 step -1

$$
\begin{aligned}
& Z:=Z * Z, L:=L+L \\
& \text { for } j=v-1 \text { to } 0 \text { step }-1
\end{aligned}
$$

pick $L_{j} \in_{R} \mathcal{L}_{\mid}$at random

$$
Z:=Z * g^{L_{j}}, L:=L+L_{j}
$$

return (L, Z).
Performance for exponents R of bit length $n=160 / 1024$ at DL-complexity $2^{n / 2}$. The number of multiplications is $a+b-2$, where $a=n / h, b=n /(h v)$, we have $\# \mathcal{L}=\int^{\dashv}=\int^{\lfloor\zeta}$.

configuration	storage	$\#$ multiplications		$\# \mathcal{L}$	
$h \times v$	$s \times v$	$n=160$	$n=1024$	160	1024
4×1	4×1	78	510	2^{80}	2^{512}
4×2	4×2	58	372	2^{80}	2^{512}
6×3	8×3	34	226	2^{81}	2^{512}

Good choices for \mathcal{L}_{\mid}. Let \mathcal{L}_{\mid}for $j=0, \ldots, v-1$ consist of the s non-zero integers $L_{j}=\sum_{i=0}^{h-1} e_{i} 2^{i a+j b}$ of smallest (resp., highest) HAmming-weight $\sum_{i=0}^{h-1} e_{i}$. Then additive relations $u+v=w$ with $u, v, w \in \mathcal{L}$ are nearly excluded. However, fast generic DL-algorithms for $g^{\mathcal{L}}$ require many additive relations in \mathcal{L}.

