Pseudo-random Exponentiation Using the LIM-LEE Method

C.P. Schnorr

Fachbereich Mathematik/Informatik Universität Frankfurt, Germany schnorr@cs.uni-frankfurt.de Abstract for rump and poster session

Suppose we want to compute g^R for a pseudo-random n bit exponent R. We first divide R into h blocks R_i , for $0 \le i \le h - 1$, of size $a = \lceil \frac{n}{h} \rceil$ and then subdivide each R_i into v smaller blocks $R_{i,j}$, for $0 \le j \le v - 1$ of size $b = \lceil \frac{a}{v} \rceil$ with $R_{i,j}$ having bits $e_{i,jb+k}$ for k = 0, ..., b - 1. We have for $vh \mid n$: $R = R_{h-1}....R_1R_0 = \sum_{i=0}^{h-1} R_i 2^{ia}, \quad R_i = R_{0,v-1}....R_{i,1}R_{i,0} =$

$$\sum_{i=0}^{v-1} R_{i,i} 2^{jb}$$
,

$$R_{i,j} = e_{i,jb+b-1} \dots e_{i,jb+1} e_{i,jb} = \sum_{k=0}^{b-1} e_{i,jb+k} 2^k,$$

$$R = \sum_{k=0}^{b-1} \sum_{j=0}^{v-1} L_{j,k} 2^k, \text{ where } L_{j,k} := \sum_{i=0}^{h-1} e_{i,jb+k} 2^{ia+jb}.$$

For each j and k there are 2^h combinations for the h bits $e_{i,jb+k}$ for i = 0, ..., h-1. For each j there are $2^h - 1$ non-zero integers $\sum_{i=0}^{h-1} e_{i,jb+k} 2^{ia+jb}$. We select for each j a subset $\mathcal{L}_{|}$ of $s \approx 2^{h/2} - 1$ of these integers. We precompute and store g^L for $L \in \mathcal{L}_{|}$ for j = 0, ..., v-1. Let $\mathcal{L} := \sum_{||=\prime}^{l-\infty} \sum_{|=\prime}^{\subseteq -\infty} \mathcal{L}_{|} \in ||$. We generate random pairs in $\mathcal{L} \times \}^{\mathcal{L}}$:

$\label{eq:lim-lee-pseudo-random exponentiation.} \\ Lim-Lee-pseudo-random exponentiation.$

 $Z := 1, \ L := 0$ for k = b - 1 to 0 step -1 $Z := Z * Z, \ L := L + L$ for j = v - 1 to 0 step -1 pick $L_j \in_R \mathcal{L}_{\mid}$ at random $Z := Z * g^{L_j}, \ L := L + L_j$

return (L, Z).

Performance for exponents R of bit length n = 160 / 1024 at DL-complexity $2^{n/2}$. The number of multiplications is a+b-2, where a = n/h, b = n/(hv), we have $\#\mathcal{L} = \int^{\dashv} = \int^{\mid \sqsubseteq}$.

$\operatorname{configuration}$	storage	# multiplications		$\# \ \mathcal{L}$	
$h \times v$	$s \times v$	n = 160	n = 1024	160	1024
4×1	4×1	78	510	2^{80}	2^{512}
4×2	4×2	58	372	2^{80}	2^{512}
6 imes 3	8 imes 3	34	226	2^{81}	2^{512}

Good choices for $\mathcal{L}_{|}$. Let $\mathcal{L}_{|}$ for j = 0, ..., v - 1 consist of the *s* non-zero integers $L_j = \sum_{i=0}^{h-1} e_i 2^{ia+jb}$ of smallest (resp., highest) HAMMING-weight $\sum_{i=0}^{h-1} e_i$. Then additive relations u + v = w with $u, v, w \in \mathcal{L}$ are nearly excluded. However, fast generic DL-algorithms for $g^{\mathcal{L}}$ require many additive relations in \mathcal{L} .