Small Generic Hardcore Subsets for the Discrete Logarithm: Short Secret DL-Keys

C.P. Schnorr

Fachbereich Mathematik/Informatik Universität Frankfurt, Germany schnorr@cs.uni-frankfurt.de Abstract for rump and poster session

Let G be a group of prime order q with generator g. We study hardcore subsets $H \subset G$ of the discrete logarithm (DL) \log_g in the model of generic algorithms. In this model we count group operations such as multiplication, division while computations with non-group data are for free. It is known from NECHAEV (1994) and SHOUP (1997) that generic DL-algorithms for the entire group G must perform $\Omega(\sqrt{q})$ generic steps.

Main results. Let m = #H denote the size of H. We show that the generic DL-complexity is at least $\frac{m}{2} + o(m)$ for almost all H of size $m \leq \sqrt{q}$. On the other hand $\lceil \frac{m}{2} \rceil + 1$ generic steps are always sufficient. Thus the generic DL-complexity is $\frac{m}{2} + o(m)$ for almost all subsets $H \subset G$ of size $m \leq \sqrt{q}$. For $m = \sqrt{q}$ the generic DL-complexity is $\frac{1}{2}\sqrt{q} + o(\sqrt{q})$, i.e., about $\frac{1}{2\sqrt{q}}$ times the generic DL-complexity $\sqrt{2q}$ for the entire group G. Interestingly, our generic lower bounds hold for arbitrary multivariate exponentiations and not just for multiplications/division.

Short secret keys. Our main result justifies to generate secret keys of DL-cryptosystems from random seeds with $\frac{1}{2}\log_2 q$ bits. For this expand a random integer $x' \in_R [0, \sqrt{q}]$ of $\frac{1}{2} \log_2 q$ bits using a strong hash function SH into a pseudo-random integer $SH(x') \in_{PR} [0,q[$. The corresponding pair $x', g^{SH(x')}$ is a DL-key pair that is — for generic attacks — nearly as strong as pairs x, g^x for truly random $x \in_R [0, q]$. This is because the generic DL-complexity is for almost all subsets $H \subset G$ of size \sqrt{q} about $\frac{1}{2\sqrt{q}}$ times the generic DL-complexity for G. Clearly, a strong hash function SH yields a set of pseudo-random public keys $SH[0,\sqrt{q}] \subset [0,q]$ of size $\Omega(\sqrt{q})$ since otherwise collisions SH(x') = SH(x'') can be constructed using less than $\Omega(\sqrt{q})$ function evaluations $[0,\sqrt{q}] \ni x \mapsto SH(x)$. Moreover, it is reasonable to assume that the set $SH[0,\sqrt{q}]$ does not fall into the exceptional class of subsets $H \subset G$ where \log_q is easy in the generic model. Generating secret keys from short random seeds can be practical if a strong hash function SHis at hand anyway. Now, there is a theoretical justification that seeds of length $\frac{1}{2}\log_2 q$ are nearly of the highest security level while shorter seeds are

less secure.

Moreover, as the generic DL-complexity is $\frac{m}{2} + o(m)$ for almost all subsets $H \subset G$ of size m, it is sufficient to generate secret DL-keys from seeds x' ranging over a set of size m that is so large that $\frac{m}{2}$ generic steps are infeasible — at present $m \geq 2^{80}$ is sufficient.

Fast pseudo-random exponentiation. An intriguing challenge along this line is to replace SH in the short secret key representation by a pseudo-random function F that speeds up the exponentiation $x' \mapsto g^{F(x')}$. We will study this problem in another submission.