On the Soundness of Girault's Scheme

Fabrice BOUDOT
France Télécom R\&D
42, rue des coutures - BP6243
14066 Caen Cedex 4
France
Tel. +33231759268
Email: fabrice.boudot@francetelecom.fr

28 April 2000

The Girault protocol [Eurocrypt'91] is a zero-knowledge like scheme which allows Alice to prove to Bob that she knows x, a discrete logarithm of y in base g modulo n, where n is a composite number whose factorization is unknown. It runs as follows: Alice randomly selects $r \in[0, A]$ (where $A \gg n)$ and sends $W=g^{r} \bmod n$ to Bob. Bob sends to Alice a random challenge $c \in[0, k]$. Alice sends in reply $D=r+x c(i n Z)$. Bob accepts the proof if $W=g^{D} y^{-c} \bmod n$.

Poupard and Stern [Eurocrypt'98] prove that this protocol is sound if computing discrete logarithms modulo n is hard, but only when this protocol is used for identification or signature schemes, i.e. when an attacker cannot choose the public data y. For other contexts (when an attacker can choose the public data y), Fujisaki and Okamoto [Crypto'97] "prove" that this protocol is sound if the strong RSA assumption holds, i.e. an attacker cannot succeeds if he does not know a discrete logarithm of y.

We show that Fujisaki-Okamoto's claim is wrong, and hence so is their proof. Moreover, an attacker can succeed to Girault's protocol without knowing the discrete logarithm of y : he can succeed with probability $1 / 2$ if he only knows the discrete logarithm of $-y$ in base g modulo n^{1} : if c is even, the attacker replies $D=r+x^{\prime} c$, where x^{\prime} is the discrete logarithm of $-y$.

To design a sound protocol, we slightly transform Girault's protocol into a zero-knowledge like proof of knowledge of a discrete logarithm of $\pm y$ in base g modulo n. Moreover, we prove that this protocol is sound if the RSA assumption holds (instead of the strong RSA assumption).

[^0]
[^0]: ${ }^{1}$ Note that when the factorization of n is unknown, the knowledge of a discrete logarithm of $-y$ does not allow to compute a discrete logarithm of y (it is not the case if n is prime or when the factorization of n is known). Moreover, the knowledge of discrete logarithms of y and $-y$ allows to factor n.

