On the Security of 3GPP Networks

Michael Walker Vodafone AirTouch & Royal Holloway, University of London Chairman 3GPP SA3 - Security

Acknowledgements

- This presentation is based on the technical specifications and reports produced by the members of 3GPP SA3 and ETSI SAGE
 - available from http://www.3gpp.org
- Much of the back ground work was done as part of the EU funded ACTS project USECA
 - the partners are Vodafone, G&D, Panasonic, Siemens Atea, Siemens AG & Katholieke Universiteit Leuven
 - http://www.useca.freeserve.co.uk

Principles for 3G Security

- Build on the security of GSM
 - adopt the security features from GSM that have proved to be needed and robust
 - try to ensure compatibility with GSM in order to ease inter-working and handover
- Correct the problems with GSM by addressing its real and perceived security weaknesses
- Add new security features
 - as are necessary to secure new services offered by 3G
 - to take account of changes in network architecture

Building on GSM Security - Architecture

Building on GSM Security, 2

- Remain compatible with GSM network architecture
- User authentication & radio interface encryption
- SIM used as security module
 - removable hardware
 - terminal independent
 - management of all customer parameters
- Operates without user assistance
- Requires minimal trust in serving network

Limitations of GSM Security

- Problems with GSM security stem by and large from design limitations on what is protected rather than on defects in the security mechanisms themselves
 - only provides *access security* communications and signalling in the fixed network portion aren't protected
 - does not address *active attacks*, whereby network elements may be impersonated
 - designed to be only as secure as the fixed networks to which they connect
 - lawful interception only considered as an after thought

Limitations of GSM Security, 2

- Failure to acknowledge limitations
 - encryption needed to guard against radio channel hijack
 - the terminal is an unsecured environment so trust in the terminal identity is misplaced
- Inadequate flexibility to upgrade and improve security functions over time
- Lack of visibility that the security is being applied
 - no indication to the user that encryption is on
 - no explicit confirmation to the home network that authentication is properly used when customers roam

Limitations of GSM Security, 3

- Lack of confidence in cryptographic algorithms
 - lack of openness in design and publication of A5/1
 - misplaced belief by regulators in the effectiveness of controls on the export or (in some countries) the use of cryptography
 - key length too short, but some implementation faults make increase of encryption key length difficult
 - need to replace A5/1, but poor design of support for simultaneous use of more than one encryption algorithm, is making replacement difficult
 - ill advised use of COMP 128

Specific GSM Security Problems

- Encryption terminated too soon
 - user traffic and signalling in clear on microwave links
- Clear transmission of cipher keys & authentication values within and between networks
 - signalling system vulnerable to interception and impersonation
- Confidence in strength of algorithms
 - failure to choose best authentication algorithms
 - improvements in cryptanalysis of A5/1
- Use of false base stations

False Base Stations

- Used as *IMSI Catcher* for law enforcement
- Used to intercept mobile originated calls
 - encryption controlled by network and user unaware if it is not on
- Dynamic cloning risk in networks where encryption is not used

3GPP Security Architecture Overview

Authentication & Key Agreement (AKA) Protocol Objectives

- Authenticate user to network & network to user
- Establish a cipher key CK (128 bit) & an integrity key IK (128 bit)
- Assure user and network that CK/IK have not been used before
- Authenticated management field HE \rightarrow USIM
 - authentication key and algorithm identifiers
 - limit CK/IK usage before USIM triggers a new AKA

AKA Prerequisites

- AuC and USIM share
 - user specific secret key K
 - message authentication functions f1, f1*, f2
 - key generating functions f3, f4, f5
- AuC has a random number generator
- AuC has scheme to generate fresh sequence numbers
- USIM has scheme to verify freshness of received sequence numbers

AKA Variables and Functions

RAND = random challenge generated by AuC

XRES = f_{K}^{2} (RAND) = expected user response computed by AuC

- RES = f_{K}^{2} (RAND) = actual user response computed by USIM
- CK = f_{K}^{3} (RAND) = cipher key

IK =
$$f4_K$$
 (RAND) = integrity key

AK =
$$f_{5_K}$$
 (RAND) = anonymity key

- SQN = sequence number
- AMF = authentication management field
- MAC = $f_{1_K}(SQN || RAND || AMF)$ = message authentication code computed over SQN, RAND and AMF
- AUTN = SQN \oplus AK || AMF || MAC = network authentication token, concealment of SQN with AK is optional
- Quintet = (RAND, XRES, CK, IK, AUTN)

AKA Message Flow

Length of AKA Cryptographic Parameters

•	Κ	128 bits	
•	RAND	128 bits	
•	RES	32-128 bits	
•	СК	128 bits	
•	IK	128 bits	
•	AUTN	128 bits	
	• SQN	Sequence number	48 bits
	• AMF	Authentication management field	16 bits
	• MAC	Message authentication code	64 bits

Air-interface Encryption, 1

- Applies to all user traffic and signalling messages
- Uses stream ciphering function f8 with provision for different algorithms: UEA1 = Kasumi; UEA0 = no encryption

Air-interface Encryption, 2

- Termination points
 - user side: mobile equipment, network side: radio network controller
- Ciphering in layer 2

•	RLC sublayer	non-transparent RLC mode	(signalli
---	--------------	--------------------------	-----------

MAC sublayer transparent RLC mode

gnalling, data) (voice)

• Key input values to algorithm

•	СК	128 bits	Cipher key
•	COUNT-C	32 bits	Ciphering sequence number
	RLC sublayer	$HFN_{RLC} (25/20) + SN_{RLC} (7/12)$	(SN _{RLC} is transmitted)
	MAC sublayer	$\mathrm{HFN}_{\mathrm{MAC}}(25) + \mathrm{CFN}_{\mathrm{MAC}}(7)$	(CFN _{MAC} is transmitted)

• Further input values

•	BEARER	5 bits	Bearer identity
•	DIRECTION	1 bit	Uplink/downlink
•	LENGTH	16 bits	Length of keystream block

Air-interface Integrity Mechanism, 1

- Applies to all except a specifically excluded signalling messages after connection and security mode set-up
- MS supervises that it is started
- Uses integrity function f9 with provision for different algorithms: UIA1 = Kasumi

Air-interface Integrity Mechanism, 2

- Termination points
 - user side: mobile equipment, network side: radio network controller
- Integrity protection: layer 2
 - RRC sublayer
- Key input values

• IK	128 bits	Integrity key
• COUNT-I	32 bits	Integrity sequence number
 consists of 	$\operatorname{HFN}_{\operatorname{RRC}}(28) + \operatorname{SN}_{\operatorname{RRC}}(4)$	(SN _{RRC} is transmitted)
• FRESH	32 bits	Connection nonce
• MESSAGE		Signalling message
Further input value	es	
DIRECTION	1 bit	Uplink/downlink
Output values		
• MAC-I/XMAC-I	32 bits	message authentication code

•

•

Connection Establishment Overview

Starting Ciphering & Integrity

Security Parameters & Choices

- START(32bits) initial hyperframe number
 - used to initialise COUNT-C/I
 - assures user MAC-I is fresh
 - START stored/updated USIM
- CKSN(3 bits) cipher key sequence number
 - indicates the key set that is stored in USIM
 - when START exceeds a certain threshold, CKSN can be used to trigger a new AKA
- FRESH(32 bits) network nonce
 - assures network MAC-I fresh

- AKA is performed when
 - the user enters a new SN
 - the user indicates that a new AKA is required when the amount of data ciphered with CK has reached a threshold
 - the serving network decides
- Otherwise integrity-key based authentication
- Selection of UEA and UIA by user/user's home environment

Network Domain Security Overview

Network Security Features, 1

- Layer 1 Key Establishment
 - KAC_X generates and stores asymmetric key pair for X, and stores public keys from other networks - exchanged as part of roaming agreement
 - generates, stores and distributes symmetric session keys for securing information sent from entities in X
 - receives and distributes symmetric session keys for securing information sent from other networks
- Session key transport to ISO/IEC 11770-3: *Key Management - mechanisms using symmetric techniques*

Network Security Features, 2

- Layer 2 Key Distribution
 - KAC_X distributes session keys to nodes in X
- Layer 3 Transport Security
 - MAP signalling provided with encryption, origin authentication and integrity using standard symmetric techniques
 - Protection limited to *new messages* in R'99 includes authentication quintets
 - Block cipher BEANO designed by ETSI SAGE for public network operators may be used

Encryption & Integrity Algorithm Requirements

- Stream cipher f8 and integrity function f9 parameters already described
- Low power, low gate-count hardware, as well as software
- No practical attack significantly more efficient than exhaustive key search
- No export restrictions on terminals (or SIMs); network equipment exportable under licence in accordance with Wassenaar
- Time for development six months!

General Approach to Design

- Robust approach to exportability full strength algorithm and expect agencies to fall into line
- ETSI SAGE appointed as design authority
- Take existing algorithm as starting point
- Use block cipher as building block for both algorithms MISTY1 chosen:
 - fairly well studied, some provable security aspects
 - parameter sizes suitable
 - designed to be efficient in hardware and software
 - offered by Mitsubishi free from royalty payments

Design and Analysis

- Designed by SAGE team, led by Gert Roelofsen with external experts:
 - SAGE design and evaluation teams
 - joined by Mitsuru Matsui from Mitsubishi designer of MISTY
 - additional evaluators from Nokia, Ericsson and Motorola led by Kaisa Nyberg
- External evaluation by three teams:
 - Leuven: Lars Knudsen, Bart Preneel, Vincent Rijmen, Johan Borst, Matt Robshaw
 - Ecole Normale Superiere: Jacques Stern, Serge Vaudenay
 - Royal Holloway: Fred Piper, Sean Murphy, Peter Wild, Simon Blackburn
- Open Publication back on ETSI web site again in June?

Kasumi

- Simpler key schedule than MISTY
- Additional functions to *complicate* cryptanalysis without affecting provable security aspects
- Changes to improve statistical properties
- Minor changes to speed up or simplify hardware

- Stream ciphering f8 uses
 Kasumi in a form of
 output feedback, but with:
 - BLKCNT added to prevent cycling
 - initial extra encryption added to protect against chosen plaintext attack and collisions
- Integrity f9 uses Kasumi to form CBC MAC with:
 - non-standard addition of 2nd feedforward

3GPP Stream Cipher f8

3GPP Integrity Function f9

Other Aspects of 3GPP Security

- Options in AKA for sequence management
- Re-authentication during a connection and periodic in-call
- Failure procedures
- Interoperation with GSM
- AKA+ and interoperation with 3GPP2 standards
- Formal analysis of AKA
- User identity confidentiality and enhanced user identity confidentiality (R00)
- User configurability and visibility of security features

- User-USIM, USIM-terminal & USIM network (SAT)
- Terminal (identity) security
- Lawful interception
- Fraud information gathering
- Network wide encryption (R00)
- Location services security
- Access to user profiles
- Mobile IP security (R00+)
- Provision of a standard authentication and key generation algorithm for operators who do not wish to produce their own

References to 3GPP Security

Principles, objectives and requirements

- TS 33.120 Security principles and objectives
- TS 21.133 Security threats and requirements

Architecture, mechanisms and algorithms

- TS 33.102 Security architecture
- TS 33.103 Integration guidelines
- TS 33.105 Cryptographic algorithm requirements
- TS 22.022 Personalisation of mobile equipment

Lawful interception

- TS 33.106 Lawful interception requirements
- TS 33.107 Lawful interception architecture and functions

Technical reports

- TR 33.900 A guide to 3G security
- TR 33.901 Criteria for cryptographic algorithm design process
- TR 33.902 Formal analysis of the 3G authentication protocol
- TR 33.908 General report on the design, specification and evaluation of 3GPP standard confidentiality and integrity algorithms

Algorithm specifications

- Specification of the 3GPP confidentiality and integrity algorithms
 - Document 1: f8 & f9
 - Document 2: KASUMI
 - Document 3: implementors' test data
 - Document 4: design conformance test data