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Access structure: Family of authorized subsets
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Unconditionally secure.

Perfect schemes: subsets not in the access structure are
forbidden.

Cryptographic primitive with many applications

Multiparty computation

Threshold cryptography

Access control

Attribute-based encryption

Oblivious transfer

...

Need of efficient schemes: Shares have to be small.
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There exist efficient schemes for certain access structures.
e.g., threshold a.s. with n participants admits schemes with t.s.s. n
(Shamir’79, Blakley’79).

Schemes with total share size n are called ideal.

... but which is the most efficient scheme for an access structure?

There are methods to construct schemes for every access structure...
(Benaloh and Leichter’88, Simmons et al’91, Brickell’89, Karchmer and Wigderson’93)

but in general are innefficient.

For most access structures, the t.s.s of these schemes is 2O(n).
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Open Problem: BRIDGE THE GAP

Open problem: Which access structures are HARD?
i.e. which access structures require large shares to be realized?

We study these problems for GRAPH ACCESS STRUCTURES.

We find new UPPER AND LOWER BOUNDS for the t.s.s.

We extend the techniques for finding upper bounds to

homogeneous access structures

the general case
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An access structure is a
graph access structure if the
minimal authorized subsets
are of size two.
It defines a graph.

A graph secret sharing
scheme is a scheme with
graph access structure.
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Graph secret sharing schemes:

All minimal authorized subsets are of size two.

Simple but interesting case.

Studied in many previous works.

First step for obtaining general results.

1 2

34

Simple construction for any
graph:

The secret s is shared
independently for every edge.

The total share size is 2m,
where m is the number of
edges.

r4

s + r4



Graphs with Ideal Schemes

1 2

3

45

6
Clique:
It defines threshold access
structure of threshold 2.



Graphs with Ideal Schemes

1 2

3

45

6
Clique:
It defines threshold access
structure of threshold 2.

Complete Bipartite Graph

1

2

3

4

5

6

1 2

3

45

6 7

Star



Bounds on the Total Share Size

The total share size of the best scheme realizing a graph access
structure is upper bounded by



Bounds on the Total Share Size

The total share size of the best scheme realizing a graph access
structure is upper bounded by

O(m), where m is the number of edges



Bounds on the Total Share Size

The total share size of the best scheme realizing a graph access
structure is upper bounded by

O(m), where m is the number of edges

O(n2/ log n)



Bounds on the Total Share Size

The total share size of the best scheme realizing a graph access
structure is upper bounded by

O(m), where m is the number of edges

O(n2/ log n)
(Bublitz’86, Blundo et al.’96, Erdös and Pyber’97)



Bounds on the Total Share Size

The total share size of the best scheme realizing a graph access
structure is upper bounded by

O(m), where m is the number of edges

O(n2/ log n)
(Bublitz’86, Blundo et al.’96, Erdös and Pyber’97)

Lower bounds:



Bounds on the Total Share Size

The total share size of the best scheme realizing a graph access
structure is upper bounded by

O(m), where m is the number of edges

O(n2/ log n)
(Bublitz’86, Blundo et al.’96, Erdös and Pyber’97)

Lower bounds:

There exists a family of access structures for which the total
share size of the schemes realizing them is Ω(n log n)



Bounds on the Total Share Size

The total share size of the best scheme realizing a graph access
structure is upper bounded by

O(m), where m is the number of edges

O(n2/ log n)
(Bublitz’86, Blundo et al.’96, Erdös and Pyber’97)

Lower bounds:

There exists a family of access structures for which the total
share size of the schemes realizing them is Ω(n log n)
(van Dijk’95, Blundo et al.’97, Csirmaz’05).



Bounds on the Total Share Size

The total share size of the best scheme realizing a graph access
structure is upper bounded by

O(m), where m is the number of edges

O(n2/ log n)
(Bublitz’86, Blundo et al.’96, Erdös and Pyber’97)

Lower bounds:

There exists a family of access structures for which the total
share size of the schemes realizing them is Ω(n log n)
(van Dijk’95, Blundo et al.’97, Csirmaz’05).

There exists a family of access structures for which the total
share size of the linear schemes realizing them is Ω(n3/2)



Bounds on the Total Share Size

The total share size of the best scheme realizing a graph access
structure is upper bounded by

O(m), where m is the number of edges

O(n2/ log n)
(Bublitz’86, Blundo et al.’96, Erdös and Pyber’97)

Lower bounds:
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(van Dijk’95, Blundo et al.’97, Csirmaz’05).

There exists a family of access structures for which the total
share size of the linear schemes realizing them is Ω(n3/2)
(Beimel et al.’97).
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Motivation of Our Work

To BRIDGE THE GAP between upper and lower bounds on the total
share size for graph access structures.

We look for EFFICIENT constructions for graphs.

We look for HARD GRAPHS

Since the total share size is upper bounded by O(n2/ log n), we try to
solve the following question:

Is there any graph with total share size Ω(n2/polylogn)?

Since every graph admits a scheme with total share size 2m, in a
hard graph m has to be big.

We study VERY DENSE GRAPHS

i.e. graphs with
(n

2

)

− ℓ edges, with ℓ "small".
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Our Main Result

Theorem

If a graph has
(n

2

)

− n1+β edges for some 0 < β < 1, then
it admits a scheme with total share size

Õ(n5/4+3β/4).

Direct consequences:

Is there any very dense graph with total share size
Ω(n2/polylogn)? the answer is NO.

in a hard graph, both m and
(n

2

)

− m must be big.

Main techniques:

Coverings by "easy" graphs: cliques, bipartite graphs and stars.

The probabilistic method.

Colorings of graphs. skip details
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The scheme for G consists on sharing the secret independently for
every piece of the covering.

We look for small coverings in order to obtain efficient schemes.



Our Main Result (III): A New Technique

We describe the graph G as a clique minus the excluded graph G′



Our Main Result (III): A New Technique

We describe the graph G as a clique minus the excluded graph G′

1 2

3

45

6 =

1 2

3

45

6 −

1 2

3

45

6



Our Main Result (III): A New Technique

We describe the graph G as a clique minus the excluded graph G′

1 2

3

45

6 =

1 2

3

45

6 −

1 2

3

45

6

Each coloring of G′ yields to a subgraph of G.



Our Main Result (III): A New Technique

We describe the graph G as a clique minus the excluded graph G′

1 2

3

45

6 =

1 2

3

45

6 −

1 2

3

45

6

Each coloring of G′ yields to a subgraph of G.

1 2

3

45

6

1 2

3

4

5

6



Our Main Result (III): A New Technique

We describe the graph G as a clique minus the excluded graph G′
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Each coloring of G′ yields to a subgraph of G.
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Taking many random colorings of G′ we end with a covering of G.
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Our Main Result (IV): Corollaries

Theorem

If a graph has
(n

2

)

− n1+β edges for some 0 < β < 1, then it admits a
scheme with total share size

Õ(n5/4+3β/4).

Corollary

If β < 1/3, then it admits a scheme with t.s.s. o(n3/2).

Corollary

If a graph has
(n

2

)

− ℓ edges,

and ℓ < n/2, then it admits a scheme with t.s.s. n + O(ℓ5/4).

and ℓ ≪ n4/5, then it admits a scheme with t.s.s. n + o(n).
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Deleting Minimal Authorized Subsets

Let G be a graph. Let Σ be a scheme of t.s.s. r realizing G.

If we add ℓ edges to G, by using the trivial construction we can
construct a scheme for the new graph with total share size r + 2ℓ.

But what happens if we delete edges from G? NOT KNOWN.

Theorem

If we delete ℓ edges from G, the new graph admits a scheme with
total share size

Õ(
√
ℓnr) if ℓ > r/n

r + 2ℓn if ℓ ≤ r/n

Direct consequence: If G admits an efficient scheme, the graphs that
are close to G are not hard.
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Deleting Minimal Authorized Subsets: Generalization
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general access structures

We provide new techniques and constructions, and we give answers
to the following problems:

Deleting minimal authorized subsets in a threshold access
structure.

Deleting minimal authorized subsets in any access structure.
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Summary and Open Directions

Summary:

Secret sharing for very dense graphs.

New upper and lower bounds for the total share size for the
schemes realizing these graphs.

Does exit any hard very dense graph?: No.

New techniques for the construction of secret sharing schemes.

Extension to homogeneous and general access structures.

Open directions:

To find hard graphs.

New techniques for finding lower bounds on the total share size.

To bridge the gap between upper and lower bounds on the total
share size.
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Appendix: Deleting Minimal Authorized Subsets

Theorem

Let Γ be a t-threshold access structures for a constant t. If we delete
ℓ minimal authorized subsets, then the resulting access structure
admits a scheme with total share size

Õ(ℓn).

Let Γ be an access structure with a scheme of t.s.s. r such that

if A ∈ min Γ, then |A| ≤ k for some constant k .

Let Γ′ be an access structure such that

min Γ′ = min Γ \∆
for every p ∈ P, there is at most d subsets in ∆ containing p.

Theorem

The access structure Γ′ admits a scheme with total share size

Õ(dk−1r).
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