
Collusion-Preserving
Computation

Joël Alwen (ETH Zürich)
Jonathan Katz (U. Maryland)

Ueli Maurer (ETH Zürich)
Vassilis Zikas (U. Maryland)

Overview

l Motivation & Goals
l Definition
l Fall-back Security
l Synchronization Pollution
l Implications for Game Theory
l Future Directions

Goals (1)

Goals (1)
l Primary Goal: A realization notion bounding the

capabilities of deviating coalitions even in the
presence of arbitrary composition.

Goals (1)
l Primary Goal: A realization notion bounding the

capabilities of deviating coalitions even in the
presence of arbitrary composition.

l “R realizes F” = R can be used in place of F

Goals (1)
l Primary Goal: A realization notion bounding the

capabilities of deviating coalitions even in the
presence of arbitrary composition.

l “R realizes F” = R can be used in place of F
l “capabilities of deviating coalitions” = such

that even collaborating “dishonest” players
can do no more with R then they could with F

Goals (1)
l Primary Goal: A realization notion bounding the

capabilities of deviating coalitions even in the
presence of arbitrary composition.

l “R realizes F” = R can be used in place of F
l “capabilities of deviating coalitions” = such

that even collaborating “dishonest” players
can do no more with R then they could with F

l “arbitrary composition” = regardless of any
concurrent activities in which they may be
involved.

Example Use Cases

Example Use Cases

l Composable Game Theory.
l Extreme case of deviating coalitions.

Example Use Cases

l Composable Game Theory.
l Extreme case of deviating coalitions.

l Collusion-Free (CF) MPC robust in the
presence of side-channels.

l CF (provably) not concurrently composable

Example Use Cases

l Composable Game Theory.
l Extreme case of deviating coalitions.

l Collusion-Free (CF) MPC robust in the
presence of side-channels.

l CF (provably) not concurrently composable
l Other (intuitive) examples requiring bounds on

collaborating dishonest players.
l Incoercability: Coercer/Informant & Coercee.
l Auctions: Bid fixing by corrupt bidders.
l Bounded Isolation: Useful for say, poker or bridge

Goals (2)

Goals (2)
l Generic definition independent of

communication resource R.
− Better for comparing different
constructions.
− Allows investigating minimal properties
for resource R used to realize a given F.

Goals (2)
l Generic definition independent of

communication resource R.
− Better for comparing different
constructions.
− Allows investigating minimal properties
for resource R used to realize a given F.

l Non-triviality: strong fall-back security even
if R “miss-behaves”.

Goals (2)
l Generic definition independent of

communication resource R.
− Better for comparing different
constructions.
− Allows investigating minimal properties
for resource R used to realize a given F.

l Non-triviality: strong fall-back security even
if R “miss-behaves”.

l Concrete communication resource R &
construction for many F.

Goals (2)
l Generic definition independent of

communication resource R.
− Better for comparing different
constructions.
− Allows investigating minimal properties
for resource R used to realize a given F.

l Non-triviality: strong fall-back security even
if R “miss-behaves”.

l Concrete communication resource R &
construction for many F.

l Explore implications for composable Game

Related Work

Related Work
l SFE/MPC [GMW, BGW,...]

l First generic realization notions.
− Not generally composable
− Gives deviating coalitions arbitrary (internal)

capabilities (monolithic adversary)

Related Work
l SFE/MPC [GMW, BGW,...]

l First generic realization notions.
− Not generally composable
− Gives deviating coalitions arbitrary (internal)

capabilities (monolithic adversary)
l Arbitrary composition [Can, PW, CLOS, CDPW,...]

l Exa: UC, GUC, JUC, etc.
− But monolithic adversary

Related Work
l SFE/MPC [GMW, BGW,...]

l First generic realization notions.
− Not generally composable
− Gives deviating coalitions arbitrary (internal)

capabilities (monolithic adversary)
l Arbitrary composition [Can, PW, CLOS, CDPW,...]

l Exa: UC, GUC, JUC, etc.
− But monolithic adversary

l Collusion-Free (CF) computation [LMPS, ILM, ASV,
AKLPSV]

l Bounds deviating coalitions (via split adversaries)

CF is not Composable

CF is not Composable
l = 2-party null functionality (does nothing)
l Define and protocol π = (,)

F

R π2 π1

CF is not Composable
l = 2-party null functionality (does nothing)
l Define and protocol π = (,)

m ∈ {0,1}π1 π2 R 2k

r ← {0,1} (unif. rand.) k

r' ∈ {0,1} k

If r' = r ⇒ a := m
Else ⇒ a := ⊥a

F

R π2 π1

CF is not Composable
l = 2-party null functionality (does nothing)
l Define and protocol π = (,)

l r is uniform random and allows no communication between
simulators. ⇒ Can always simulate for with a = ⊥.
⇒ CF-realizes via π.

m ∈ {0,1}π1 π2 R 2k

r ← {0,1} (unif. rand.) k

r' ∈ {0,1} k

If r' = r ⇒ a := m
Else ⇒ a := ⊥a

F

R π2 π1

π1
F

FR

CF is not Composable
l = 2-party null functionality (does nothing)
l Define and protocol π = (,)

l r is uniform random and allows no communication between
simulators. ⇒ Can always simulate for with a = ⊥.
⇒ CF-realizes via π.

l Now compose with ; a k-bit channel from P2→P1. Use it transmit r.
So P2 can learn m from . But using & the simulators can
communicate at most k. I.e. π is no longer simulatable!

m ∈ {0,1}π1 π2 R 2k

r ← {0,1} (unif. rand.) k

r' ∈ {0,1} k

If r' = r ⇒ a := m
Else ⇒ a := ⊥a

F

R π2 π1

π1
F

FR

C
R F C

Composable CF → Collusion-Preservation

Composable CF → Collusion-Preservation

l Goal: Add composability to CF.

Composable CF → Collusion-Preservation

l Goal: Add composability to CF.
l Idea: Add an environment (as in UC-style

realization notions) to CF → CP.

Composable CF → Collusion-Preservation

l Goal: Add composability to CF.
l Idea: Add an environment (as in UC-style

realization notions) to CF → CP.
l Immediate results:

l Dummy (adversary) lemma and (G)UC
composition theorems hold essentially
unchanged.

Composable CF → Collusion-Preservation

l Goal: Add composability to CF.
l Idea: Add an environment (as in UC-style

realization notions) to CF → CP.
l Immediate results:

l Dummy (adversary) lemma and (G)UC
composition theorems hold essentially
unchanged.

l CP strictly generalizes (G)UC realization
notions.

Construction (1)

Construction (1)

l CP Construction for F using resource R:
l Trivial Idea: Resource R = Functionality F.

Construction (1)

l CP Construction for F using resource R:
l Trivial Idea: Resource R = Functionality F.

l Issues:
l R depends on F

− We show that to some extent such a
dependency is unavoidable.

− However at least R must only be
“programmable” but not fully “non-uniform”.

Construction (1)

l CP Construction for F using resource R:
l Trivial Idea: Resource R = Functionality F.

l Issues:
l R depends on F

− We show that to some extent such a
dependency is unavoidable.

− However at least R must only be
“programmable” but not fully “non-uniform”.

l If R mis-behaves all bets are off.
− Usually we don't care about this case. But trust

is a rare commodity.

Fallback Security

Fallback Security

l Def. “Fallback Security” = Security attained
when protocol is run using an arbitrary
communication resource.

Fallback Security

l Def. “Fallback Security” = Security attained
when protocol is run using an arbitrary
communication resource.

l Example: Protocol π CP-realizes R from F with
GUC-Fallback Security.

l If π is run with R then F is CP-realized.
l If π is run with any R* then F is GUC-realized.

Fallback Security

l Def. “Fallback Security” = Security attained
when protocol is run using an arbitrary
communication resource.

l Example: Protocol π CP-realizes R from F with
GUC-Fallback Security.

l If π is run with R then F is CP-realized.
l If π is run with any R* then F is GUC-realized.

l Now trivial construction no longer works
because it achieves no fallback security.

Construction (2)

Construction (2)
l Recall CF construction of Mediated Model of [ASV,

AKLPSV]. Idea: “assisted SFE in the mediator's head”
l For functionality F, let protocol π = GMW(F).
l “Mediator” resource M runs π on behalf of players “in

her head”.
l Player Pi's internal state in π shared between Pi and

M.
l Next protocol msg generated and Pi's state updated

via 2-party SFE between Pi and M.

Construction (2)
l Recall CF construction of Mediated Model of [ASV,

AKLPSV]. Idea: “assisted SFE in the mediator's head”
l For functionality F, let protocol π = GMW(F).
l “Mediator” resource M runs π on behalf of players “in

her head”.
l Player Pi's internal state in π shared between Pi and

M.
l Next protocol msg generated and Pi's state updated

via 2-party SFE between Pi and M.
l CP Construction Idea:

l Use π = GUC(F) with setup S.
− GUC allows us to reuse S across protocols.

Synchronization Pollution (1)

Synchronization Pollution (1)

l Did we get CP with GUC fall-back?
l No! “Synchronization Pollution”

Synchronization Pollution (1)

l Did we get CP with GUC fall-back?
l No! “Synchronization Pollution”

l Recall Intuitive Goal: Ensure corrupt colluding
parties get no more from R then from F.

l Technically: Can simulate with split simulators

Synchronization Pollution (1)

l Did we get CP with GUC fall-back?
l No! “Synchronization Pollution”

l Recall Intuitive Goal: Ensure corrupt colluding
parties get no more from R then from F.

l Technically: Can simulate with split simulators
l Solutions:

1.Remove subliminal communication channels
(“steganography freeness”) [Sim84]
2.Remove “randomness pollution” for CF [LMS05,

ILM05,...]

Synchronization Pollution (2)

Synchronization Pollution (2)

l This work: Identify and mitigate new security concern.

Synchronization Pollution (2)

l This work: Identify and mitigate new security concern.
l Def. “Synchronization Pollution” = Adversaries obtain more

synchronization of events using R then using F.

Synchronization Pollution (2)

l This work: Identify and mitigate new security concern.
l Def. “Synchronization Pollution” = Adversaries obtain more

synchronization of events using R then using F.
l Intuitive problem: more observable events from R than

from F ⇒ Adversaries more coordinated.

Synchronization Pollution (2)

l This work: Identify and mitigate new security concern.
l Def. “Synchronization Pollution” = Adversaries obtain more

synchronization of events using R then using F.
l Intuitive problem: more observable events from R than

from F ⇒ Adversaries more coordinated.

l Technical Problem: F doesn't provide simulators
enough synchronization for them to coordinate the
events in their on-line simulations.

− Not an issue for CF because distinguisher (unlike
environment) is off-line.

Mitigating Synchronization Pollution

Mitigating Synchronization Pollution
l Idea: Resource R runs ρ = GUC(F) “in the head”. Minimize

number of observable events generated by assisting R.

Mitigating Synchronization Pollution
l Idea: Resource R runs ρ = GUC(F) “in the head”. Minimize

number of observable events generated by assisting R.
l Problem: ρ is multi-round ⇒ Has many public ordered events.

l Q: What is minimal synchronization obtained from 2-party SFEs
used to “assist” R in running ρ?

Mitigating Synchronization Pollution
l Idea: Resource R runs ρ = GUC(F) “in the head”. Minimize

number of observable events generated by assisting R.
l Problem: ρ is multi-round ⇒ Has many public ordered events.

l Q: What is minimal synchronization obtained from 2-party SFEs
used to “assist” R in running ρ?

l A: Surprisingly, only output-delivery synchronization.
l Ideal World: F delivers output only after players activated

enough to “fuel” an execution of ρ.
l Technically: 2-party SFEs now hide all events in ρ.
l e.g. Round number? Message received? From who?

Message sent? To who? State changed? (!!!)
l [AKLPSV]: hides only internal state of Pj and message

contents for ρ.

Result

Result
l Show the necessity of several properties of our real-

world resource R.
l Probabilistic, Isolating, Programmable.

Result
l Show the necessity of several properties of our real-

world resource R.
l Probabilistic, Isolating, Programmable.

⇒ Rule out using most standard resources for realizing
practically any interesting F.

l Broadcast channel, insecure/secure/perfect channels.

Result
l Show the necessity of several properties of our real-

world resource R.
l Probabilistic, Isolating, Programmable.

⇒ Rule out using most standard resources for realizing
practically any interesting F.

l Broadcast channel, insecure/secure/perfect channels.

⇒ Minimality of Mediator resource.

Result
l Show the necessity of several properties of our real-

world resource R.
l Probabilistic, Isolating, Programmable.

⇒ Rule out using most standard resources for realizing
practically any interesting F.

l Broadcast channel, insecure/secure/perfect channels.

⇒ Minimality of Mediator resource.

l Theorem: For a large class of F we give a resource
and protocol that CP-realize F with GUC-fallback.

Applications to GT

Applications to GT
1)Define a model of rational, computational and concurrent

mediated game play
Goal: Bring GT models closer to reality (Crypto :)).
Principle: Local actions. Global intentions and consequences

Applications to GT
1)Define a model of rational, computational and concurrent

mediated game play
Goal: Bring GT models closer to reality (Crypto :)).
Principle: Local actions. Global intentions and consequences

2)Show how to replace ideal mechanism with cryptographic
protocol games on a network s.t.

l Game theorists can design and analyze ideal and fully
trusted mechanisms

l but games can be played by computers over (special)
networks s.t.

l less trust placed in network than mechanism achieving
essentially the same game.

Future Directions

Future Directions
l Further constructions.

l Weaker fallback → realize more funcs. more efficiently.
l When can R be stateless?
l Can output synchronization be removed from F?
l Efficient constructions for auctions?

Future Directions
l Further constructions.

l Weaker fallback → realize more funcs. more efficiently.
l When can R be stateless?
l Can output synchronization be removed from F?
l Efficient constructions for auctions?

l New security notions leveraging split-simulators.
l Example: Capturing enforced properties like incoercability.
l Currently: if a single process (ITI) on a machine is corrupted

entire party is considered corrupt. Can we do better? What do we
get from Sandboxes, VMs, chroot jails, restricted UIDs? E.g LUC
[CV12]

Future Directions
l Further constructions.

l Weaker fallback → realize more funcs. more efficiently.
l When can R be stateless?
l Can output synchronization be removed from F?
l Efficient constructions for auctions?

l New security notions leveraging split-simulators.
l Example: Capturing enforced properties like incoercability.
l Currently: if a single process (ITI) on a machine is corrupted

entire party is considered corrupt. Can we do better? What do we
get from Sandboxes, VMs, chroot jails, restricted UIDs? E.g LUC
[CV12]

l Wanted: Local stability notion for Concurrent GT.

Future Directions
l Further constructions.

l Weaker fallback → realize more funcs. more efficiently.
l When can R be stateless?
l Can output synchronization be removed from F?
l Efficient constructions for auctions?

l New security notions leveraging split-simulators.
l Example: Capturing enforced properties like incoercability.
l Currently: if a single process (ITI) on a machine is corrupted

entire party is considered corrupt. Can we do better? What do we
get from Sandboxes, VMs, chroot jails, restricted UIDs? E.g LUC
[CV12]

l Wanted: Local stability notion for Concurrent GT.
l Relations to Abstract Cryptography framework [MR11].

Thank You!

