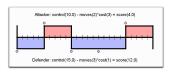
Illegitimi non carborundum

Ronald L. Rivest

Viterbi Professor of EECS MIT, Cambridge, MA


> CRYPTO 2011 2011-08-15

Illegitimi non carborundum (Don't let the bastards grind you down!)

Ronald L. Rivest

Viterbi Professor of EECS MIT, Cambridge, MA

> CRYPTO 2011 2011-08-15

Illegitimi non carborundum (Don't let the bastards grind you down!)

Ronald L. Rivest

Viterbi Professor of EECS MIT, Cambridge, MA

> CRYPTO 2011 2011-08-15

Outline

Overview and Context

The Game of "FLIPIT"

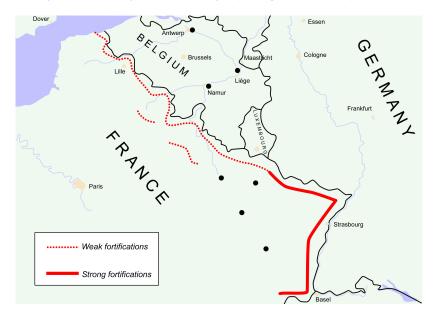
Non-Adaptive Play

Adaptive Play

Lessons and Open Questions

Cryptography

Cryptography is mostly about using mathematics and secrets to achieve confidentiality, integrity, or other security objectives.


Assumptions

We make assumptions as necessary, such as ability of parties to generate unpredictable keys and to keep them secret, or inability of adversary to perform certain computations.

Murphy's Law: "If anything can go wrong, it will!"

Assumptions may fail, badly. (Maginot Line)

R

Even worse...

In an adversarial situation, assumption may fail repeatedly...

(ref Advanced Persistent Threats)

Most crypto is like Maginot line...

We work hard to make up good keys and distribute them properly, then we sit back and wait for the attack.

There is a line we assume adversary can not cross (theft of keys).

Partial key theft

Much research allows adversary to steal *some* portion of key(s).

- secret-sharing [S79,...]
- proactive crypto [HJKY95,...]
- signer-base intrusion-resilience [IR04,...]
- leakage-resilient crypto [MR04,...]

But adversary isn't allowed to steal *everything*, all at once. (Some exceptions, e.g. intrusion-resilient secure channels [IMR'05])

This just moves the line in the digital sand a bit...

Total key loss

To be a good security professional, there shouldn't be limits on your paranoia! (The adversary won't respect such limits...)
Are we being sufficiently paranoid??

Lincoln's Riddle

Q: "If I call the dog's tail a leg, how many legs does it have?"

Lincoln's Riddle

Q: "If I call the dog's tail a leg, how many legs does it have?"

A: "Four. It doesn't matter what you *call* the tail; it is still a tail."

Corollary to Lincoln's Riddle

Calling a bit-string a "secret key" doesn't actually make it secret...

Corollary to Lincoln's Riddle

Calling a bit-string a "secret key" doesn't actually make it secret...

Rather, it just identifies it as an interesting target for the adversary!

Our goal

To develop new models for scenarios involving total key loss.

Especially those scenarios where theft is stealthy or covert (not immediately noticed by good guys).

FLIPIT

The Game of "FLIPIT" (aka "Stealthy Takeover")

joint work with Ari Juels, Alina Oprea, Marten van Dijk of RSA Labs

FLIPIT is a two-player game

- Operation Defender = Player 0 = Blue
- Attacker = Player 1 = Red

FLIPIT is a two-player game

- Operation Defender = Player 0 = Blue
- Attacker = Player 1 = Red

FLIPIT is rather symmetric, and we say "player i" to refer to an arbitrary player.

Examples:

A password

Examples:

- A password
- A digital signature key

Examples:

- A password
- A digital signature key
- A computer system

Examples:

- A password
- A digital signature key
- A computer system
- A mountain pass

Good | Bad

Good | Bad Secret | Guessed or Stolen

Good | Bad

Secret | Guessed or Stolen

Clean | Compromised

Good | Bad

Secret | Guessed or Stolen

Clean | Compromised

Controlled by Defender | Controlled by Attacker

Good | Bad

Secret | Guessed or Stolen

Clean | Compromised

Controlled by Defender | Controlled by Attacker

Blue | Red

Defender move puts resource into Good state

Defender move puts resource into Good state
 Initialize Reset Recover Dis-infect

- Defender move puts resource into Good state
 Initialize Reset Recover Dis-infect
- Attacker move puts resource into Bad state

- Defender move puts resource into Good state
 Initialize Reset Recover Dis-infect
- Attacker move puts resource into Bad state
 Compromise Corrupt Steal Infect

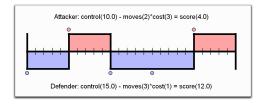
- Defender move puts resource into Good state
 Initialize Reset Recover Dis-infect
- Attacker move puts resource into Bad stateCompromise Corrupt Steal Infect

Time is *continuous*, not discrete.

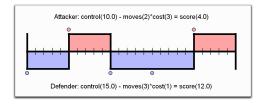
- Defender move puts resource into Good state
 Initialize Reset Recover Dis-infect
- Attacker move puts resource into Bad stateCompromise Corrupt Steal Infect

Time is *continuous*, not discrete. Players move at same time with probability 0.

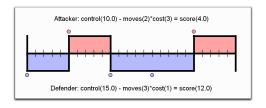
Examples of moves:

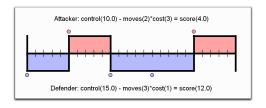

- Create new password or signing key.
- Steal password or signing key.

Examples of moves:


- Create new password or signing key.
- Steal password or signing key.
- Re-install system software.
- Use zero-day attack to install rootkit.

Examples of moves:


- Create new password or signing key.
- Steal password or signing key.
- Re-install system software.
- Use zero-day attack to install rootkit.
- Send soldiers to mountain pass.
- Send soldiers to mountain pass.


Note that Attacker can take over at any time.

- Note that Attacker can take over at any time.
- There is no "perfect defense".

- Note that Attacker can take over at any time.
- There is no "perfect defense".
- Only option for Defender is to re-take control later by moving again.

- Note that Attacker can take over at any time.
- There is no "perfect defense".
- Only option for Defender is to re-take control later by moving again.
- The game may go on forever...

► In practice, compromise is often undetected...

- In practice, compromise is often undetected...
- ► In FLIPIT,
 players do not immediately know when the
 other player makes a move!
 (Very unusual in game theory literature!)

- In practice, compromise is often undetected...
- ► In FLIPIT, players do not immediately know when the other player makes a move! (Very unusual in game theory literature!)
- Player's uncertainty about system state increases with time since his last move.

- In practice, compromise is often undetected...
- ► In FLIPIT, players do not immediately know when the other player makes a move! (Very unusual in game theory literature!)
- Player's uncertainty about system state increases with time since his last move.
- A move may take control ("flip") or have no effect ("flop").

- In practice, compromise is often undetected...
- ► In FLIPIT, players do not immediately know when the other player makes a move! (Very unusual in game theory literature!)
- Player's uncertainty about system state increases with time since his last move.
- A move may take control ("flip") or have no effect ("flop").
- Uncertainty means flops are unavoidable.

Moves may be informative

► A player learns the state of the system *only* when he moves.

Moves may be informative

- ▶ A player learns the state of the system *only* when he moves.
- ▶ In basic FLIPIT, each move has feedback that reveals all previous moves.

Moves may be informative

- ► A player learns the state of the system *only* when he moves.
- ► In basic FLIPIT, each move has feedback that reveals all previous moves.
- In variants, move reveals only current state, or time since other player last moved...

Moves aren't for free!

- Moves aren't for free!
- ▶ Player i pays k_i points per move: Defender pays k₀, Attacker pays k₁

- Moves aren't for free!
- Player i pays k_i points per move: Defender pays k₀, Attacker pays k₁
- Being in control yields gain!

- Moves aren't for free!
- Player i pays k_i points per move: Defender pays k₀, Attacker pays k₁
- Being in control yields gain!
- Player earns one point for each second he is in control.

How well are you playing? (Notation)

▶ Let N_i(t) denote number moves by player i up to time t. His average rate of play is

$$\alpha_i(t) = N_i(t)/t$$
.

How well are you playing? (Notation)

▶ Let N_i(t) denote number moves by player i up to time t. His average rate of play is

$$\alpha_i(t) = N_i(t)/t$$
.

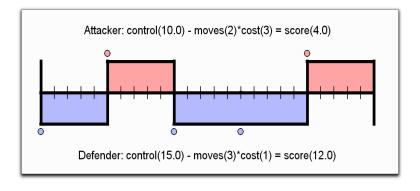
Let G_i(t) denote the number of seconds player i is in control, up to time t. His rate of gain up to time t as

$$\gamma_i(t) = G_i(t)/t$$
.

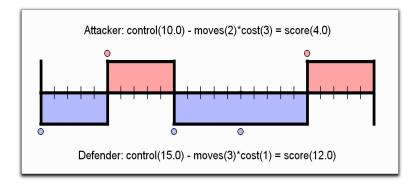
How well are you playing? (Notation)

Score (net benefit) B_i(t) up to time t is TimeInControl - CostOfMoves:

$$B_i(t) = G_i(t) - k_i \cdot N_i(t)$$


Benefit rate is

$$\beta_i(t) = B_i(t)/t$$


$$= \gamma_i(t) - k_i \cdot \alpha_i(t)$$

▶ Player wishes to maximize $\beta_i = \lim_{t\to\infty} \beta_i(t)$.

Movie of FLIPIT Game - Global View

Movie of FLIPIT Game - Defender View

How to play well?

Non-Adaptive Play

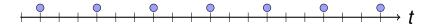
A non-adaptive strategy plays on blindly, independent of other player's moves.

- A non-adaptive strategy plays on blindly, independent of other player's moves.
- ► In principle, a non-adaptive player can pre-compute his entire (infinite!) list of moves before the game starts.

- ► A *non-adaptive strategy* plays on blindly, independent of other player's moves.
- ► In principle, a non-adaptive player can pre-compute his entire (infinite!) list of moves before the game starts.
- Some interesting non-adaptive strategies:

- ► A *non-adaptive strategy* plays on blindly, independent of other player's moves.
- In principle, a non-adaptive player can pre-compute his entire (infinite!) list of moves before the game starts.
- Some interesting non-adaptive strategies:
 - Periodic play

- ► A *non-adaptive strategy* plays on blindly, independent of other player's moves.
- In principle, a non-adaptive player can pre-compute his entire (infinite!) list of moves before the game starts.
- Some interesting non-adaptive strategies:
 - Periodic play
 - Exponential (memoryless) play


- ► A *non-adaptive strategy* plays on blindly, independent of other player's moves.
- In principle, a non-adaptive player can pre-compute his entire (infinite!) list of moves before the game starts.
- Some interesting non-adaptive strategies:
 - Periodic play
 - Exponential (memoryless) play
 - Renewal strategies: iid intermove times

Periodic play

Player *i* may play *periodically* with rate α_i and period $1/\alpha_i$

Periodic play

Player *i* may play *periodically* with rate α_i and period $1/\alpha_i$ E.g. for $\alpha_0 = 1/3$, we might have:

Periodic play

Player *i* may play *periodically* with rate α_i and period $1/\alpha_i$ E.g. for $\alpha_0 = 1/3$, we might have:

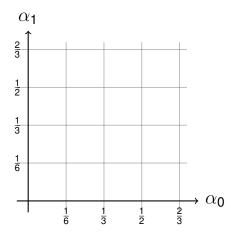
It is convenient to assume that periodic play involves miniscule amounts of jitter or drift; play is effectively periodic but will drift out of phase with truly periodic.

Adaptive play against a periodic opponent

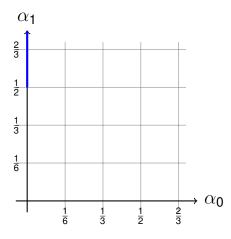
An adaptive Attacker can easily learn the period and phase of a periodic Defender, so that periodic play is useless against an adaptive opponent, unless it is very fast.

- **Examples:**
 - a sentry make his regular rounds
 - 90-day password reset

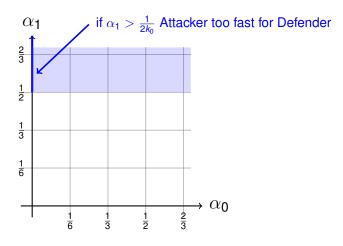
Periodic Attacker

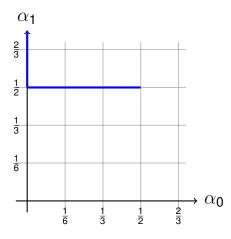

Theorem

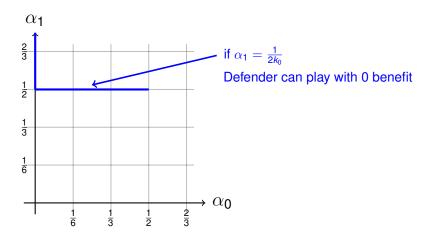
If Attacker moves periodically at rate α_1 (and period $1/\alpha_1$, with unknown phase), then optimum non-adaptive Defender strategy is

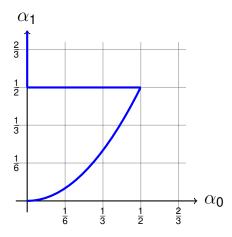

- if $\alpha_1 > 1/2k_0$, don't play(!),
- if $\alpha_1 = 1/2k_0$, play periodically at any rate α_0 , $0 \le \alpha_0 \le 1/2k_0$,
- if $\alpha_1 < 1/2k_0$, play periodically at rate

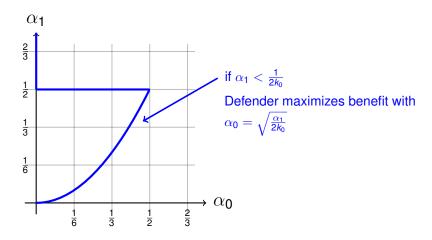
$$\alpha_0 = \sqrt{\frac{\alpha_1}{2k_0}} > \alpha_1$$

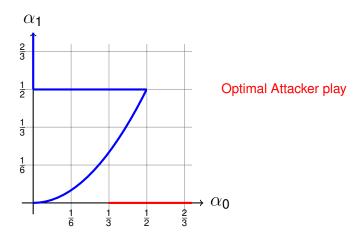

$$(k_0 = 1, k_1 = 1.5)$$

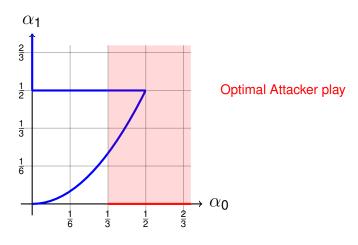

 $(k_0 = 1, k_1 = 1.5)$

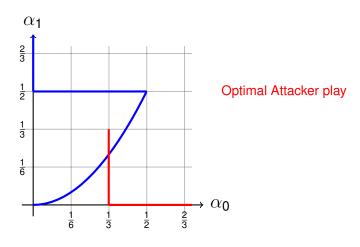

$$(k_0=1,k_1=1.5)$$

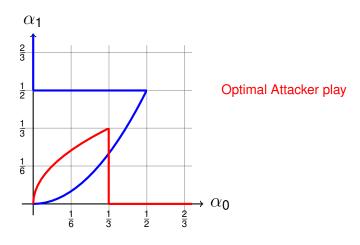

 $(k_0 = 1, k_1 = 1.5)$

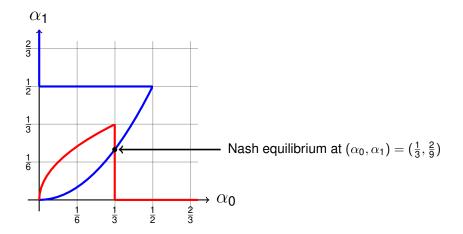

$$(k_0=1,k_1=1.5)$$


Graph for Periodic Attacker and Periodic Defender $(k_0 = 1, k_1 = 1.5)$


$$(k_0 = 1, k_1 = 1.5)$$


$$(k_0=1,k_1=1.5)$$


$$(k_0=1,k_1=1.5)$$


$$(k_0=1,k_1=1.5)$$

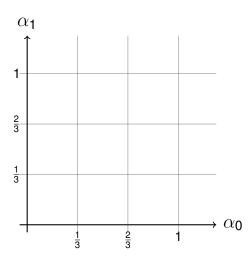
$$(k_0=1,k_1=1.5)$$

$$(k_0 = 1, k_1 = 1.5)$$

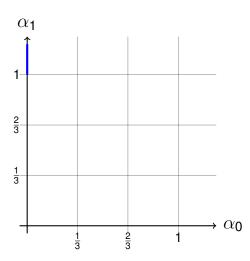
$$(k_0 = 1, k_1 = 1.5)$$

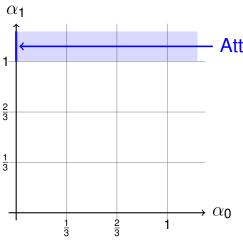

Exponential Attacker

If Attacker plays exponentially with rate α_1 , then his moves form a memoryless Poisson process; he plays independently in each interval of time of size dt with probability $\alpha_1 dt$

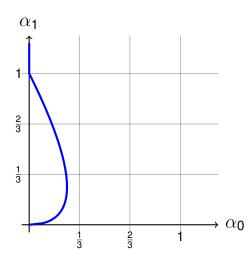

Probability that intermove delay is at most x is

1 –
$$e^{-\alpha_1 x}$$

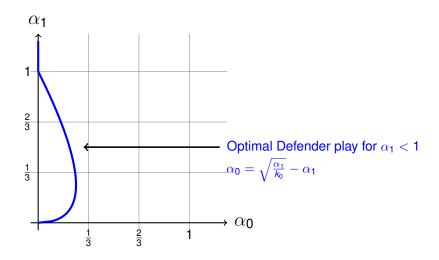

For $\alpha_1 = 0.5$, we might have:


 $(k_0 = 1, k_1 = 1.5)$

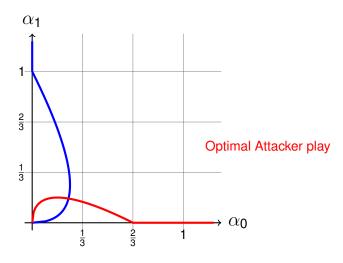
 $(k_0 = 1, k_1 = 1.5)$

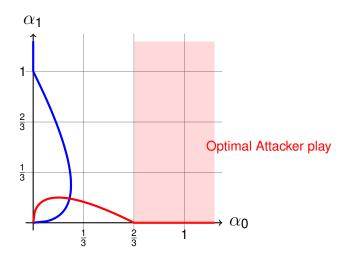


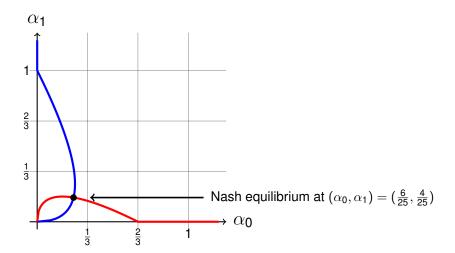
Graph for Exponential Attacker and Defender) $(k_0 = 1, k_1 = 1.5)$

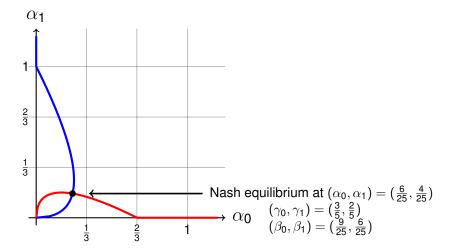


Attacker too fast if $\alpha_1 > 1$


$$(k_0 = 1, k_1 = 1.5)$$


$$(k_0 = 1, k_1 = 1.5)$$


$$(k_0 = 1, k_1 = 1.5)$$


$$(k_0 = 1, k_1 = 1.5)$$

$$(k_0 = 1, k_1 = 1.5)$$

$$(k_0 = 1, k_1 = 1.5)$$

Renewal Strategies

A *renewal strategy* is one with iid intermove delays for player *i*'s moves:

$$\Pr(\text{delay} \leq x) = F_i(x)$$

for some distribution F_i .

Renewal strategies form a very large class of (non-adaptive) strategies; periodic, exponential, etc. are special cases...

Origin of term: player's moves form a *renewal* process.

Optimal (renewal) play against a renewal strategy.

One of our major results is the following:

Theorem

The optimal renewal strategy against any renewal strategy is either periodic or not playing.

Proof notes

Average time between buses

 \neq

Average waiting time for a bus

Proof notes

Average time between buses

 \neq

Average waiting time for a bus

Proof considers size-biased interval sizes...

Proof notes

Average time between buses

 \neq

Average waiting time for a bus

Proof considers size-biased interval sizes...

Note that a periodic strategy minimizes variance of interval sizes, and thus minimizes size-biased interval size.

Adaptive Play

Adaptive Strategies

Periodic strategy not very effective against adaptive Attacker, who can learn to move just after each Defender move.

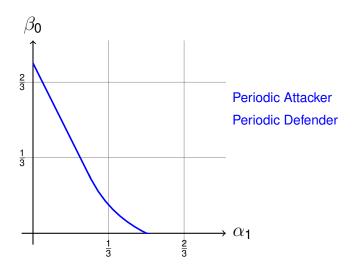
Adaptive Strategies

- Periodic strategy not very effective against adaptive Attacker, who can learn to move just after each Defender move.
- FLIPIT with adaptive strategies can be complicated – generalizes iterated Prisoner's Dilemma—e.g. for periodic play:

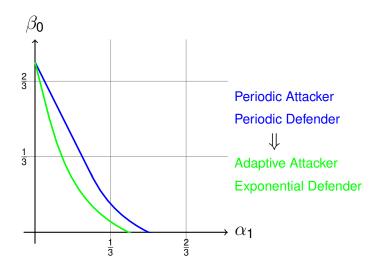
Adaptive Strategies

- Periodic strategy not very effective against adaptive Attacker, who can learn to move just after each Defender move.
- FLIPIT with adaptive strategies can be complicated – generalizes iterated Prisoner's Dilemma—e.g. for periodic play:

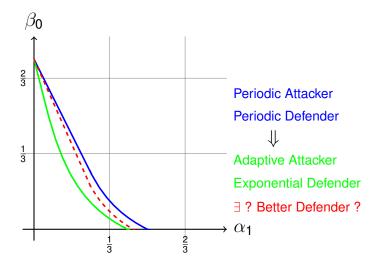
	$slow(\alpha_1 = 0.1)$	$fast(\alpha_1 = 0.2)$
$slow(\alpha_0 = 0.1)$	0.40,0.40	-0.10,0.55
$fast(\alpha_0 = 0.2)$	0.55,-0.10	0.30,0.30


Exponential works well even against adaptive strategies

Theorem


The optimal strategy (of any sort, even adaptive) against an exponential strategy is either periodic or not playing.

Defender can always play exponential strategy against a potentially adaptive Attacker; Attacker can't then do better than playing periodically (or not playing).


Defender's ($\alpha_0 = 0.25$) net benefit β_0 against optimal (periodic) Attacker (α_1 variable)

Defender's ($\alpha_0 = 0.25$) net benefit β_0 against optimal (adaptive) Attacker (α_1 variable)

Defender's ($\alpha_0 = 0.25$) net benefit β_0 against optimal (adaptive) Attacker (α_1 variable)

Lessons and Open Questions

Lessons

 Be prepared to deal with continual repeated failure (loss of control).

Lessons

- Be prepared to deal with continual repeated failure (loss of control).
- Play fast! Aim to make opponent drop out! (Agility!)

Lessons

- Be prepared to deal with continual repeated failure (loss of control).
- Play fast! Aim to make opponent drop out! (Agility!)
- Arrange game so that your moves cost much less than your opponent's!
 (Cheap to refresh passwords or keys, easy to reset system to pristine state (as with a virtual machine))

Conjecture: The optimal non-adaptive strategy against a renewal strategy is periodic.

(We only proved that optimal renewal strategy is periodic.)

What is "optimal" renewal strategy against an adaptive rate-limited Attacker? (e.g. $N_1(t)/t \le \alpha_1$ for all t)?

What is "optimal" renewal strategy against an adaptive rate-limited Attacker? (e.g. $N_1(t)/t \le \alpha_1$ for all t)?

That is, how to balance trade-off between periodic play, which has low-variance intervals but is predictable, and exponential, which has high-variance intervals but is very unpredictable?

Perhaps using gamma-distributed intervals or delayed exponentials?

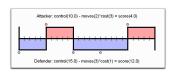
Are there information-theoretic bounds on how well a rate-limited Attacker can do against a fixed renewal strategy by Defender?

What learning theory algorithms yield adaptive strategies provably optimal against renewal strategies?

Open questions 5, 6, 7, ...

- 5 Multi-player FLIPIT
- 6 Other feedback models (e.g. add low-cost "check")
- 7 How to structure PKI when any party (including CA's) may get "hacked" at any time?

... ...


Online version of FLIPIT

More information on FLIPIT, including an online interactive version of the game, will be available in the next few weeks at:

www.rsa.com/flipit

Enjoy!

The End

