

Constant-Rate Oblivious Transfer from Noisy Channels

Yuval Ishai

Eyal Kushilevitz

Rafail Ostrovsky

Manoj Prabhakaran

Amit Sahai

Jürg Wullschleger



Constant-Rate Oblivious Transfer from Noisy Channels

Yuval Ishai

Eyal Kushilevitz

Rafail Ostrovsky

Manoj Prabhakaran

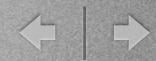
Amit Sahai

Jürg Wullschleger

From our point of view, an ideal communication line is a sterile, cryptographically uninteresting entity. Noise, on the other hand, breeds disorder, uncertainty, and confusion. Thus, it is the cryptographer's natural ally.

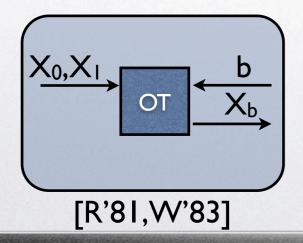
Claude Crépeau & Joe Kilian, 1988.

 Wyner's wire-tap channel: information-theoretically secret communication, without shared keys [w'75]

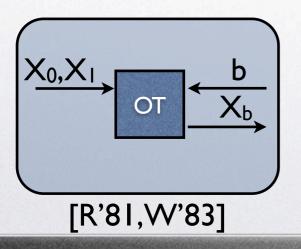


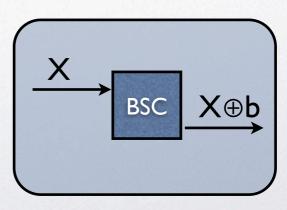
- Wyner's wire-tap channel: information-theoretically secret communication, without shared keys [w'75]
- Oblivious Transfer from noisy channel [CK'88]

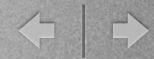
- Wyner's wire-tap channel: information-theoretically secret communication, without shared keys [w'75]
- Oblivious Transfer from noisy channel [CK'88]



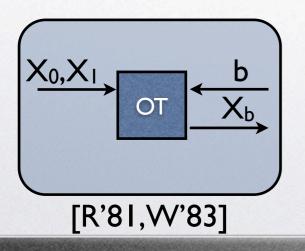
- Wyner's wire-tap channel: information-theoretically secret communication, without shared keys [W'75]
- Oblivious Transfer from noisy channel [CK'88]

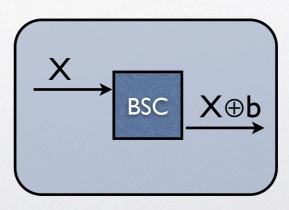




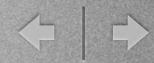


- Wyner's wire-tap channel: information-theoretically secret communication, without shared keys [w'75]
- Oblivious Transfer from noisy channel [CK'88]
 - OT is complete for secure computation [K'88]





 cf. Shannon's Channel Coding Theorem: O(1) many uses of BSC per bit of communication



- cf. Shannon's Channel Coding Theorem: O(1) many uses of BSC per bit of communication
- How many uses of BSC per OT instance?

- cf. Shannon's Channel Coding Theorem: O(1) many uses of BSC per bit of communication
- How many uses of BSC per OT instance?
 - [CK'88] $O(k^{11})$ to get a security error of 2^{-k}

- cf. Shannon's Channel Coding Theorem: O(1) many uses of BSC per bit of communication
- How many uses of BSC per OT instance?
 - [CK'88] $O(k^{11})$ to get a security error of 2^{-k}
 - [C'97] $O(k^3)$

- cf. Shannon's Channel Coding Theorem: O(1) many uses of BSC per bit of communication
- How many uses of BSC per OT instance?
 - [CK'88] $O(k^{11})$ to get a security error of 2^{-k}
 - [C'97] $O(k^3)$
 - [CMW'04] $O(k^{2+\varepsilon})$

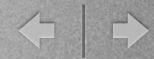
- cf. Shannon's Channel Coding Theorem: O(1) many uses of BSC per bit of communication
- How many uses of BSC per OT instance?
 - [CK'88] $O(k^{11})$ to get a security error of 2^{-k}
 - [C'97] $O(k^3)$
 - [CMW'04] $O(k^{2+\varepsilon})$
 - [HIKN'08] O(1) for semi-honest security

- cf. Shannon's Channel Coding Theorem: O(1) many uses of BSC per bit of communication
- How many uses of BSC per OT instance?
 - [CK'88] $O(k^{11})$ to get a security error of 2^{-k}
 - [C'97] $O(k^3)$
 - [CMW'04] $O(k^{2+\varepsilon})$
 - [HIKN'08] O(1) for semi-honest security
- Goal: To get O(1) (Can't do better even given free noiseless channels [ww'10])

- cf. Shannon's Channel Coding Theorem: O(1) many uses of BSC per bit of communication
- How many uses of BSC per OT instance?

or more general noisy channels

- [CK'88] $O(k^{11})$ to get a security error of 2^{-k}
- [C'97] $O(k^3)$
- [CMW'04] $O(k^{2+\varepsilon})$
- [HIKN'08] O(1) for semi-honest security
- Goal: To get O(1) (Can't do better even given free noiseless channels [ww'10])



 Plan: use IPS construction [IPS'08] to compile a semihonest secure "inner protocol" and an honest-majority secure "outer protocol" using a few string-OTs



- Plan: use IPS construction [IPS'08] to compile a semihonest secure "inner protocol" and an honest-majority secure "outer protocol" using a few string-OTs
 - A modified compiler so that the inner-protocol can use noisy channels. Requires inner protocol to be "error tolerant"

- Plan: use IPS construction [IPS'08] to compile a semihonest secure "inner protocol" and an honest-majority secure "outer protocol" using a few string-OTs

 protocol (by partial oblivious monitoring), as
 - A modified compiler so that the inner-protocol can use noisy channels. Requires inner protocol to be
 "error tolerant"

Harder to detect cheating in innerprotocol (by partial oblivious monitoring), as there is a noisy channel involved.

Will require the inner-protocol to be secure against active corruption of a small fraction of channel instances

- Plan: use IPS construction [IPS'08] to compile a semihonest secure "inner protocol" and an honest-majority secure "outer protocol" using a few string-OTs

 protocol (by partial oblivious monitoring), as
 - A modified compiler so that the inner-protocol can use noisy channels. Requires inner protocol to be
 "error tolerant"
 - Constant-rate inner and outer protocols from literature [GMW'87+HIKN'08,DI'06+CC'06]

Harder to detect cheating in innerprotocol (by partial oblivious monitoring), as there is a noisy channel involved.

Will require the inner-protocol to be secure against active corruption of a small fraction of channel instances

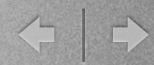
- Plan: use IPS construction [IPS'08] to compile a semihonest secure "inner protocol" and an honest-majority secure "outer protocol" using a few string-OTs

 protocol (by partial oblivious monitoring), as
 - A modified compiler so that the inner-protocol can use noisy channels. Requires inner protocol to be
 "error tolerant"
 - Constant-rate inner and outer protocols from literature [GMW'87+HIKN'08,DI'06+CC'06]
 - A <u>constant-rate construction for string-OT</u> from noisy channel

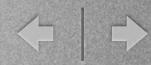
Harder to detect cheating in innerprotocol (by partial oblivious monitoring), as there is a noisy channel involved.

Will require the inner-protocol to be secure against active corruption of a small fraction of channel instances

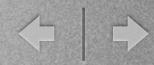
• *t*-bit string-OT with O(t)+poly(k) communication (over a noisy channel)



• t-bit string-OT with O(t)+poly(k) communication (over a noisy channel) Previously, known from OT-like and erasure channels [BCW'03,IMN'06]



- t-bit string-OT with O(t)+poly(k) communication (over a noisy channel) Previously, known from OT-like and erasure channels [BCW'03,IMN'06]
- Can use current constructions with a constant security parameter to get "fuzzy" OT: i.e., with constant security error



- t-bit string-OT with O(t)+poly(k) communication (over a noisy channel) Previously, known from OT-like and erasure channels [BCW'03,IMN'06]
- Can use current constructions with a constant security parameter to get "fuzzy" OT: i.e., with constant security error
 - Challenge: change constant security error to negligible error

- t-bit string-OT with O(t)+poly(k) communication (over a noisy channel) Previously, known from OT-like and erasure channels [BCW'03,IMN'06]
- Can use current constructions with a constant security parameter to get "fuzzy" OT: i.e., with constant security error
 - Challenge: change constant security error to negligible error
 - String-OT from fuzzy OT (or fuzzy OLE, in fact)

- t-bit string-OT with O(t)+poly(k) communication (over a noisy channel) Previously, known from OT-like and erasure channels [BCW'03,IMN'06]
- Can use current constructions with a constant security parameter to get "fuzzy" OT: i.e., with constant security error
 - Challenge: change constant security error to negligible error
 - String-OT from fuzzy OT (or fuzzy OLE, in fact)

- t-bit string-OT with O(t)+poly(k) communication (over a noisy channel) Previously, known from OT-like and erasure channels [BCW'03,IMN'06]
- Can use current constructions with a constant security parameter to get "fuzzy" OT: i.e., with constant security error
 - Challenge: change constant security error to negligible error
 - String-OT from fuzzy OT (or fuzzy OLE, in fact)
 - First, reinterpret fuzzy OLE as a perfect "shaky" OLE

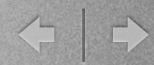


- t-bit string-OT with O(t)+poly(k) communication (over a noisy channel) Previously, known from OT-like and erasure channels [BCW'03,IMN'06]
- Can use current constructions with a constant security parameter to get "fuzzy" OT: i.e., with constant security error
 - Challenge: change constant security error to negligible error
 - String-OT from fuzzy OT (or fuzzy OLE, in fact)
 - First, reinterpret fuzzy OLE as a perfect "shaky" OLE
 - Next, use shaky OLE to get string-OT

Fuzzy and Shaky

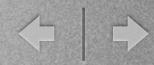
Fuzzy and Shaky

 Fuzzy <u>protocol</u>: realizes F with a constant security error ε (statistical distance between ideal and real executions)



Fuzzy and Shaky

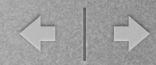
- Fuzzy <u>protocol</u>: realizes F with a constant security error ϵ (statistical distance between ideal and real executions)
- Shaky functionality: $F^{(\sigma)}$ flips a σ -biased coin, and if heads, then works as F, else (w/ prob σ) surrenders to the adversary



Fuzzy and Shaky

- Fuzzy protocol: realizes F with a constant security error ϵ (statistical distance between ideal and real executions)
- Shaky functionality: $F^{(\sigma)}$ flips a σ -biased coin, and if heads, then works as F, else (w/ prob σ) surrenders to the adversary
- Theorem

An ϵ -fuzzy protocol for F is a perfectly secure protocol for $F^{((\sigma))}$

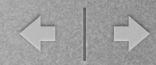


 $\sigma = \#rounds.|X||Y|\varepsilon$

Fuzzy and Shaky

- Fuzzy protocol: realizes F with a constant security error ϵ (statistical distance between ideal and real executions)
- Shaky functionality: $F^{(\sigma)}$ flips a σ -biased coin, and if heads, then works as F, else (w/ prob σ) surrenders to the adversary
- Theorem

An ε -fuzzy protocol for F is a perfectly secure protocol for $F^{((\sigma))}$



 $\sigma = \#rounds.|X||Y|\varepsilon$

Fuzzy and Shaky

- Fuzzy <u>protocol</u>: realizes F with a constant security error ϵ (statistical distance between ideal and real executions)
- Shaky functionality: $F^{(\sigma)}$ flips a σ -biased coin, and if heads, then works as F, else (w/ prob σ) surrenders to the adversary
- Theorem

An ε -fuzzy protocol for F is a perfectly secure protocol for $F^{(\sigma)}$

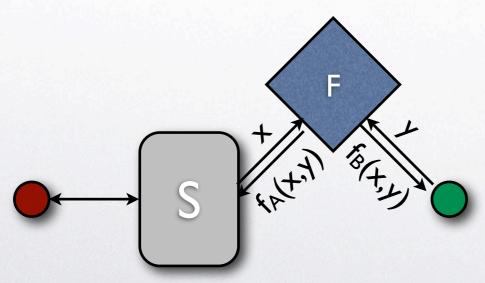
• As a composition theorem: Running n copies of an ε -fuzzy protocol gives about $(1-\sigma)n$ good copies of F (randomly chosen)

"Statistical security to Perfect security"

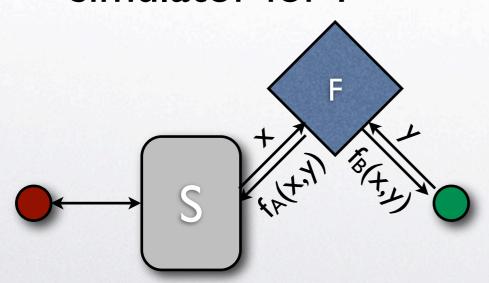


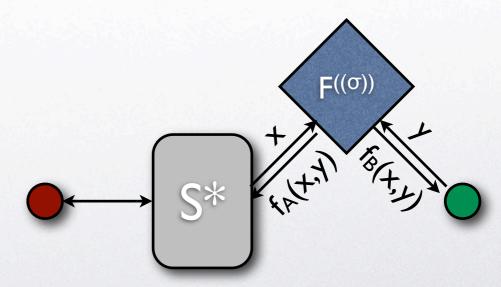
- "Statistical security to Perfect security"
- Works for UC-security (as well as standalone security)

- "Statistical security to Perfect security"
- Works for UC-security (as well as standalone security)
 - Given a simulator for F with error ϵ , build a perfect simulator for $F^{(\sigma)}$



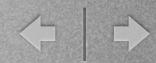
- "Statistical security to Perfect security"
- Works for UC-security (as well as standalone security)
 - Given a simulator for F with error ϵ , build a perfect simulator for $F^{((\sigma))}$





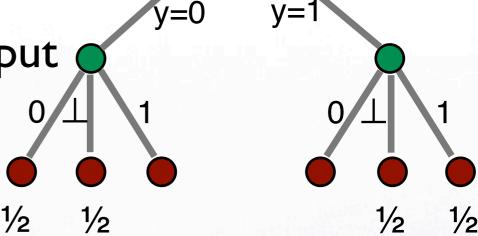


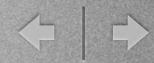
A degenerate functionality F



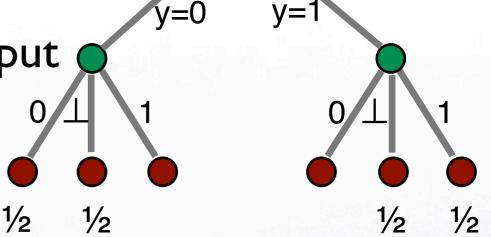
- A degenerate functionality F
 - Takes a bit from Bob as input; no output

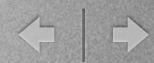
- A degenerate functionality F
 - Takes a bit from Bob as input; no output
- A fuzzy protocol: With probability $\frac{1}{2}$ Bob sends his input to Alice, else \perp





- A degenerate functionality F
 - Takes a bit from Bob as input; no output
- A fuzzy protocol: With probability $\frac{1}{2}$ Bob sends his input to Alice, else \bot
 - For corrupt Alice, simulator in the ideal F execution sends ⊥ with probability ½, and else a random bit



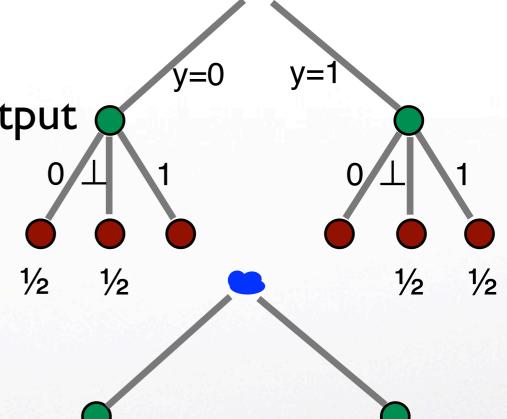


A degenerate functionality F

Takes a bit from Bob as input; no output

• A fuzzy protocol: With probability $\frac{1}{2}$ Bob sends his input to Alice, else \bot

 For corrupt Alice, simulator in the ideal F execution sends \(\perp \) with probability \(\frac{1}{2}\), and else a random bit

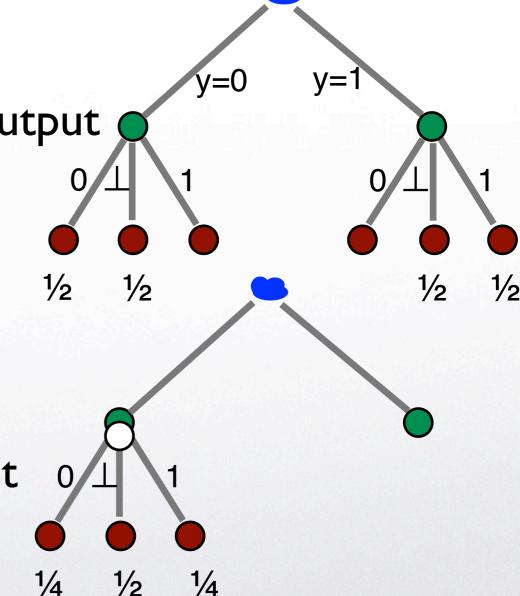


A degenerate functionality F

Takes a bit from Bob as input; no output

• A fuzzy protocol: With probability $\frac{1}{2}$ Bob sends his input to Alice, else \bot

 For corrupt Alice, simulator in the ideal F execution sends ⊥ with probability ½, and else a random bit



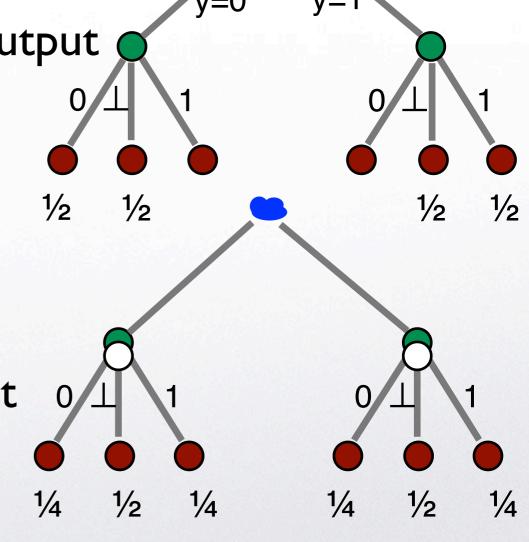


A degenerate functionality F

Takes a bit from Bob as input; no output

• A fuzzy protocol: With probability $\frac{1}{2}$ Bob sends his input to Alice, else \bot

 For corrupt Alice, simulator in the ideal F execution sends ⊥ with probability ½, and else a random bit





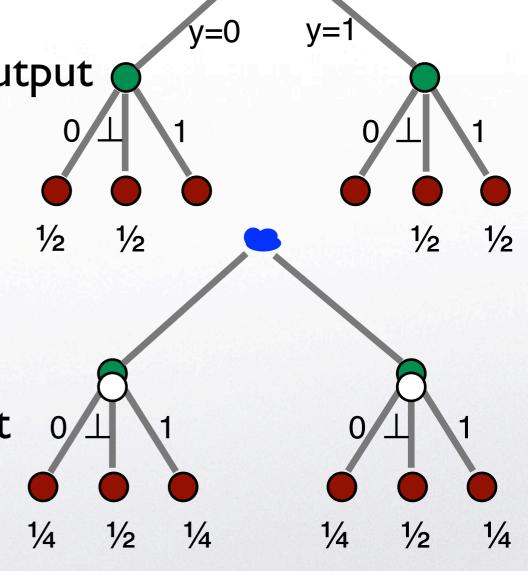
A degenerate functionality F

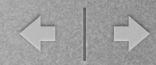
• Takes a bit from Bob as input; no output

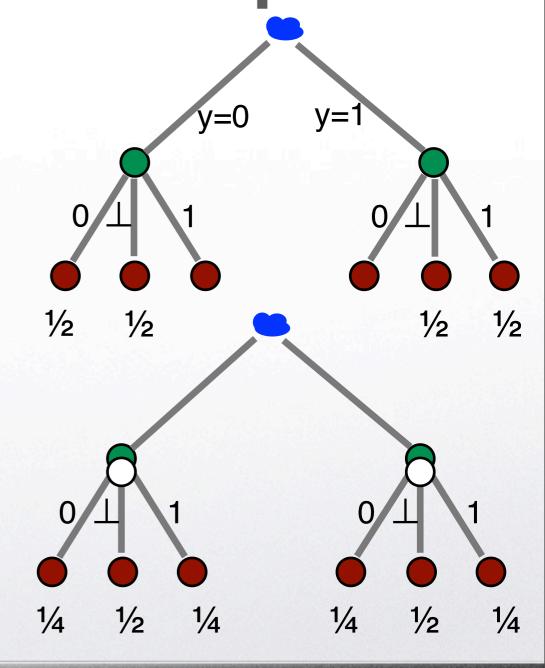
• A fuzzy protocol: With probability $\frac{1}{2}$ Bob sends his input to Alice, else \bot

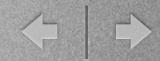
 For corrupt Alice, simulator in the ideal F execution sends ⊥ with probability ½, and else a random bit

• Simulation error = $\frac{1}{4}$

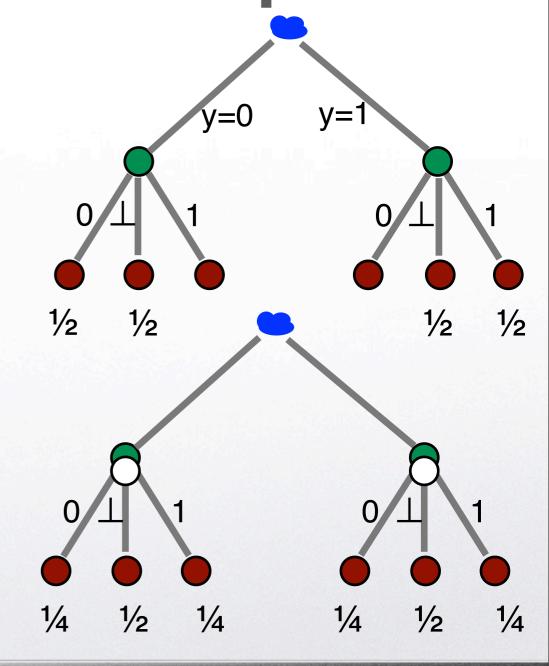


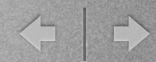




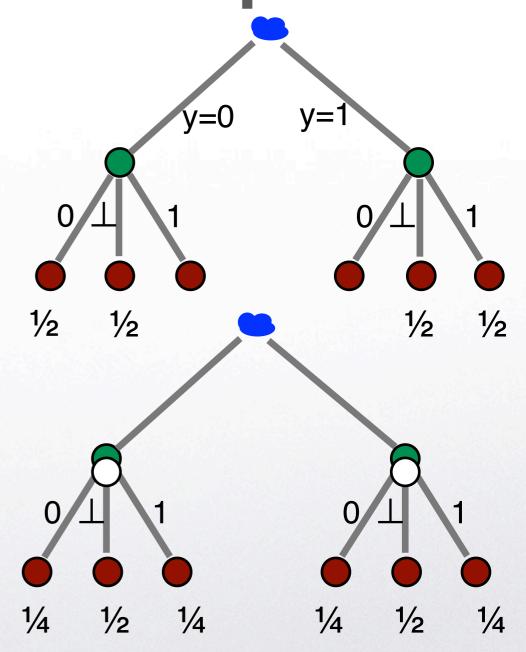


• Simulator for $F^{((1/2))}$ in two parts:



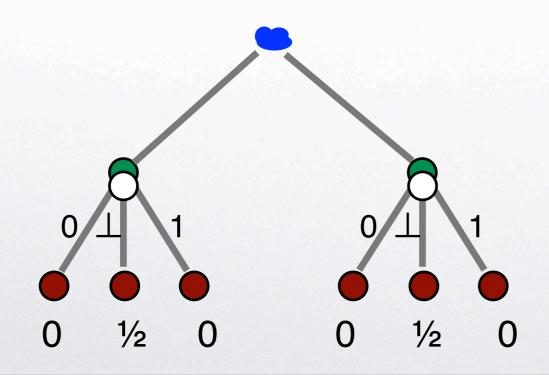


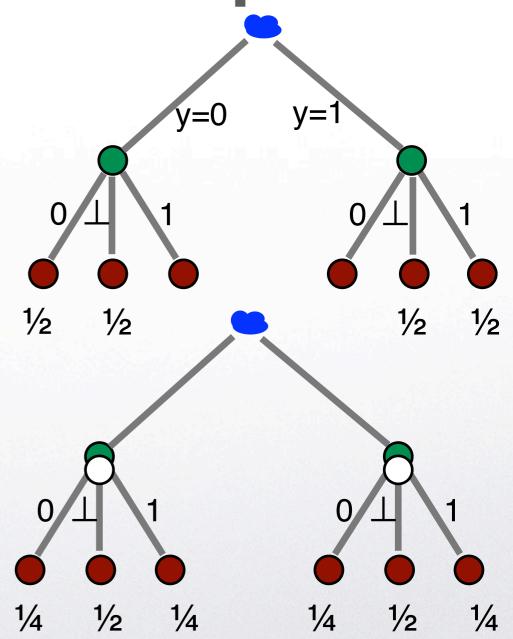
- Simulator for $F^{((1/2))}$ in two parts:
 - A part "dominated" both by the protocol and the given simulation



+ | +

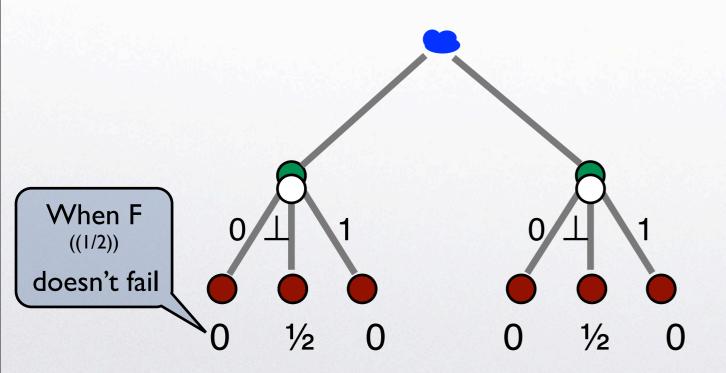
- Simulator for $F^{((1/2))}$ in two parts:
 - A part "dominated" both by the protocol and the given simulation

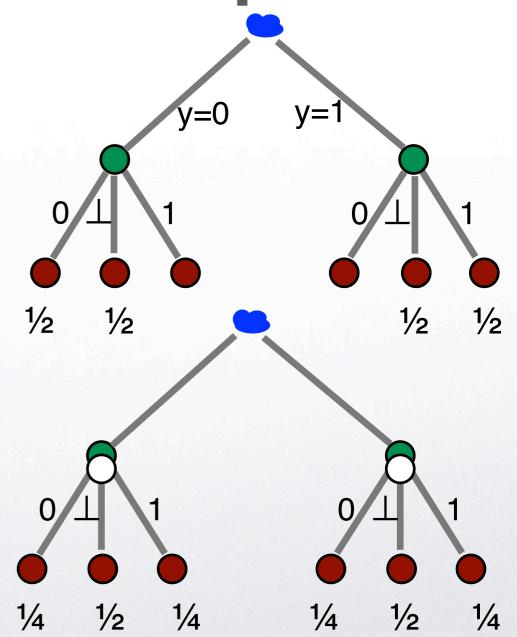




+ | +

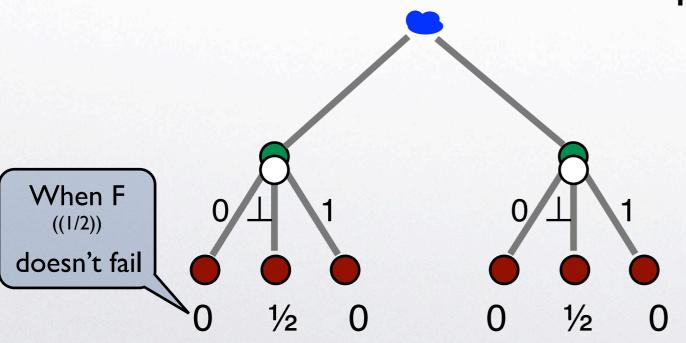
- Simulator for $F^{(1/2)}$ in two parts:
 - A part "dominated" both by the protocol and the given simulation

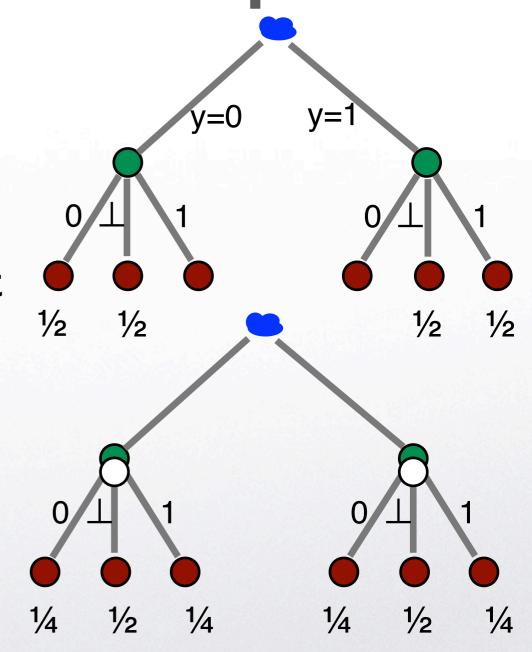




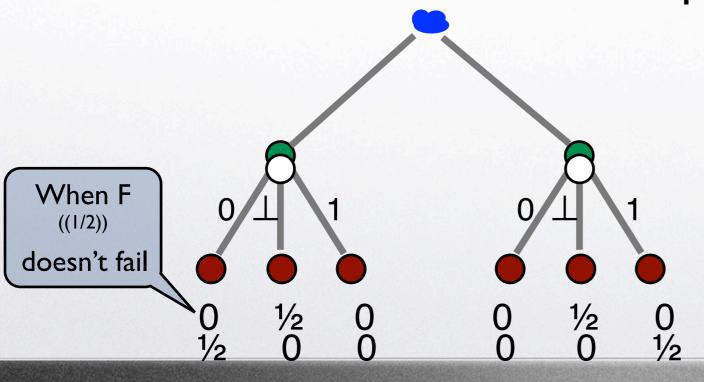
+ | +

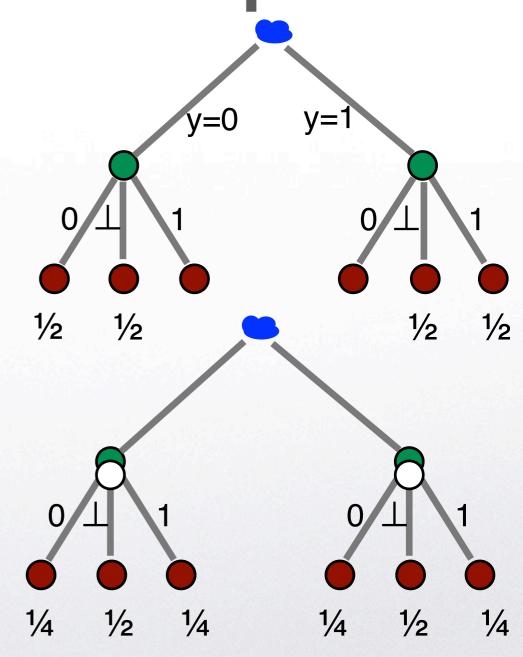
- Simulator for $F^{((1/2))}$ in two parts:
 - A part "dominated" both by the protocol and the given simulation
 - The "remainder" to make it perfect



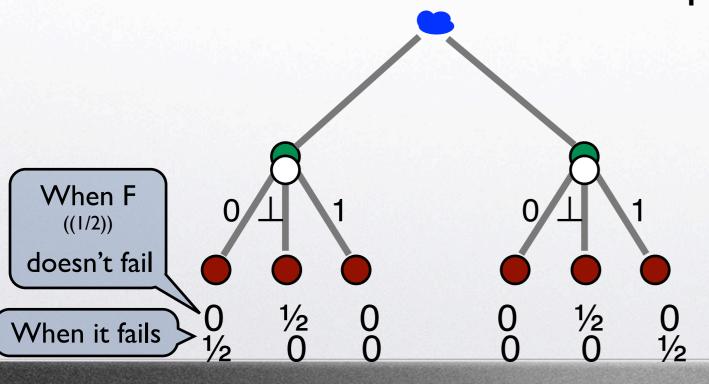


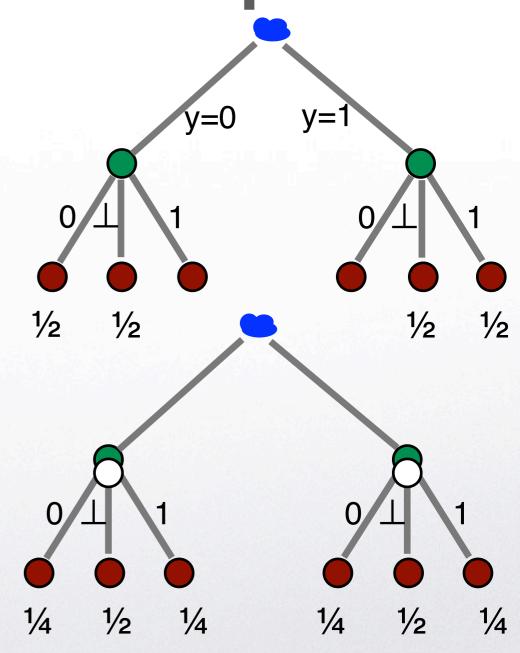
- Simulator for $F^{((1/2))}$ in two parts:
 - A part "dominated" both by the protocol and the given simulation
 - The "remainder" to make it perfect



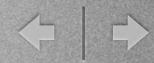


- Simulator for $F^{((1/2))}$ in two parts:
 - A part "dominated" both by the protocol and the given simulation
 - The "remainder" to make it perfect



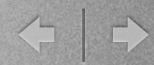


Much more complicated when Alice has an input or output



- Much more complicated when Alice has an input or output
- Theorem

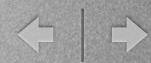
An ε -fuzzy protocol for F is a perfectly secure protocol for $F^{((\sigma))}$



- Much more complicated when Alice has an input or output
- Theorem

$$\sigma = \#rounds.|X||Y|\varepsilon$$

An ε -fuzzy protocol for F is a perfectly secure protocol for $F^{(v)}$



- Much more complicated when Alice has an input or output
- Theorem An ϵ -fuzzy protocol for F is a perfectly secure protocol for $F^{(\sigma)}$
- Holds for any deterministic function F

- Much more complicated when Alice has an input or output
- Theorem An ϵ -fuzzy protocol for F is a perfectly secure protocol for $F^{(\sigma)}$
- Holds for any deterministic function F
- Simulator's description is exponential in the fuzzy protocol's communication complexity

- Much more complicated when Alice has an input or output
- Theorem An ϵ -fuzzy protocol for F is a perfectly secure protocol for $F^{(\sigma)}$
- Holds for any deterministic function F
- Simulator's description is exponential in the fuzzy protocol's communication complexity
 - But for us, this is a constant: fuzzy OLE is a (non-constant rate) OLE protocol instantiated with a constant security parameter

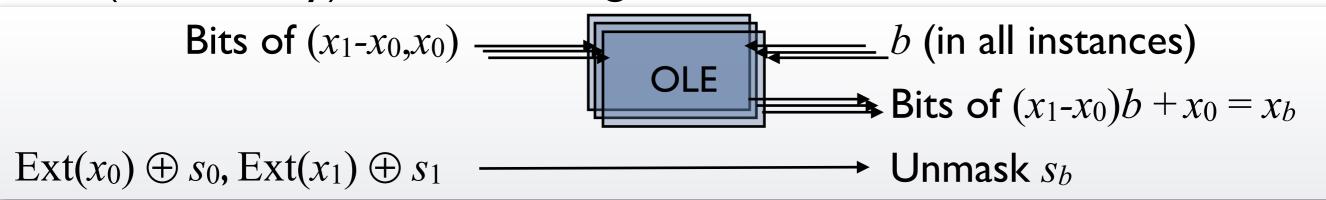
Shaky OLE to String-OT

Shaky OLE to String-OT

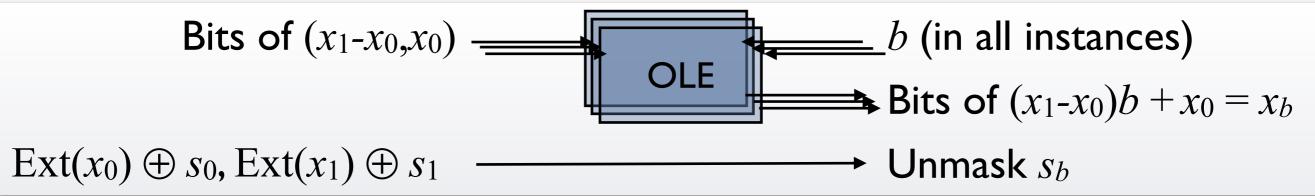
• (Non-shaky) OLE to String-OT:

Shaky OLE to String-OT

• (Non-shaky) OLE to String-OT:

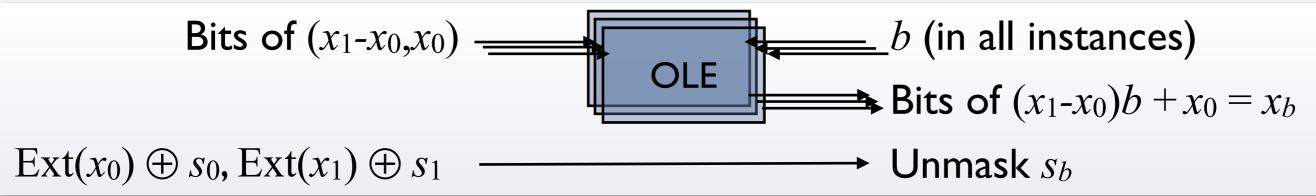


• (Non-shaky) OLE to String-OT:



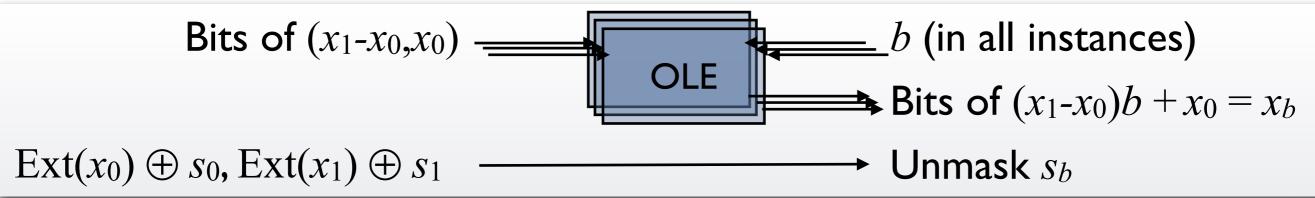
• Alice "extracts" fewer than n/2 bits from each of x_0 and x_1 and sends $\operatorname{Ext}(x_0) \oplus s_0$ and $\operatorname{Ext}(x_1) \oplus s_1$ to Bob

• (Non-shaky) OLE to String-OT:

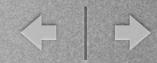


- Alice "extracts" fewer than n/2 bits from each of x_0 and x_1 and sends $\operatorname{Ext}(x_0) \oplus s_0$ and $\operatorname{Ext}(x_1) \oplus s_1$ to Bob
- But with shaky OLE, Alice may learn Bob's input b (and Bob may learn more than n/2 bits each of x_0 and x_1)

• (Non-shaky) OLE to String-OT:



- Alice "extracts" fewer than n/2 bits from each of x_0 and x_1 and sends $\operatorname{Ext}(x_0) \oplus s_0$ and $\operatorname{Ext}(x_1) \oplus s_1$ to Bob
- But with shaky OLE, Alice may learn Bob's input b (and Bob may learn more than n/2 bits each of x_0 and x_1)
- Fix: using a constant-rate encoding of x_0 , x_1 and b



• Const. rate encodings $\operatorname{Enc}:\mathbb{F}^m \to \mathbb{F}^n$ and $\operatorname{Enc}^2:\mathbb{F}^m \to \mathbb{F}^n$ such that:

- Const. rate encodings $\operatorname{Enc}:\mathbb{F}^m \to \mathbb{F}^n$ and $\operatorname{Enc}^2:\mathbb{F}^m \to \mathbb{F}^n$ such that:
 - $\operatorname{Enc}(A) * \operatorname{Enc}(B) + \operatorname{Enc}^2(C) \in \operatorname{Enc}^2(AB+C)$

- Const. rate encodings $\operatorname{Enc}:\mathbb{F}^m \to \mathbb{F}^n$ and $\operatorname{Enc}^2:\mathbb{F}^m \to \mathbb{F}^n$ such that:
 - $\operatorname{Enc}(A) * \operatorname{Enc}(B) + \operatorname{Enc}^2(C) \in \operatorname{Enc}^2(AB+C)$

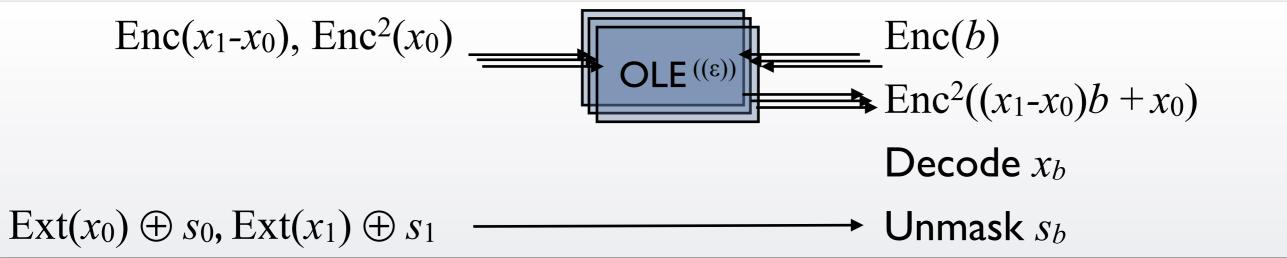
co-ordinate wise mult.

- Const. rate encodings $\operatorname{Enc}:\mathbb{F}^m \to \mathbb{F}^n$ and $\operatorname{Enc}^2:\mathbb{F}^m \to \mathbb{F}^n$ such that:
 - $\operatorname{Enc}(A) * \operatorname{Enc}(B) + \operatorname{Enc}^2(C) \in \operatorname{Enc}^2(AB+C)$ co-ordinate wise mult.
 - Error-correcting & Secret-sharing: For d = a (small) constant fraction of n, Enc^2 allows (efficient) decoding up to d errors; also, any d co-ordinates of Enc independent of the message

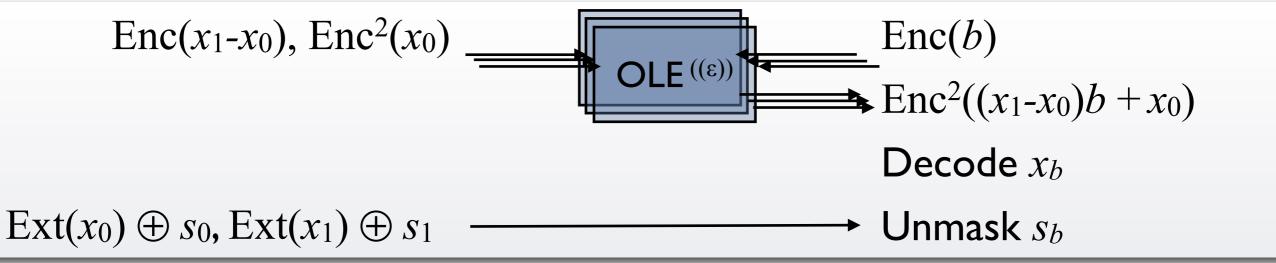
- Const. rate encodings $\operatorname{Enc}:\mathbb{F}^m \to \mathbb{F}^n$ and $\operatorname{Enc}^2:\mathbb{F}^m \to \mathbb{F}^n$ such that:
 - $\operatorname{Enc}(A) * \operatorname{Enc}(B) + \operatorname{Enc}^2(C) \in \operatorname{Enc}^2(AB+C)$ co-ordinate wise mult.
 - Error-correcting & Secret-sharing: For d = a (small) constant fraction of n, Enc^2 allows (efficient) decoding up to d errors; also, any d co-ordinates of Enc independent of the message
 - Enc² is sufficiently randomizing: Enc²(A) is uniform over an n- $m(1+\delta)$ -dimensional subspace of \mathbb{F}^n

- Const. rate encodings $\operatorname{Enc}:\mathbb{F}^m \to \mathbb{F}^n$ and $\operatorname{Enc}^2:\mathbb{F}^m \to \mathbb{F}^n$ such that:
 - $\operatorname{Enc}(A) * \operatorname{Enc}(B) + \operatorname{Enc}^2(C) \in \operatorname{Enc}^2(AB+C)$ co-ordinate wise mult.
 - Error-correcting & Secret-sharing: For d = a (small) constant fraction of n, Enc^2 allows (efficient) decoding up to d errors; also, any d co-ordinates of Enc independent of the message
 - Enc² is sufficiently randomizing: Enc²(A) is uniform over an n- $m(1+\delta)$ -dimensional subspace of \mathbb{F}^n
- Instantiated from an "MPC-friendly code" (a.k.a codex) of appropriate parameters [CC'06,IKOS'09, next talk]

Enc(x_1 - x_0), Enc²(x_0) Enc(b) $Enc^2((x_1-x_0)b + x_0)$ $Ext(x_0) \oplus s_0$, Ext(x_1) $\oplus s_1$ Unmask s_b



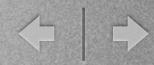
• Secure against Alice, since Bob can correct a constant fraction of errors, and since a small fraction of $\mathrm{Enc}(b)$ reveals nothing of b



- Secure against Alice, since Bob can correct a constant fraction of errors, and since a small fraction of $\operatorname{Enc}(b)$ reveals nothing of b
- Secure against Bob, since he knows nothing of at least one of the extracted strings (even given the other one, and all that he gets in the protocol; relies on the randomization of $\text{Enc}^2(x_0)$)

• Constant rate OT from BSC (and in fact, any noisy channel that gives OT)

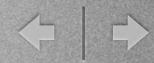
- Constant rate OT from BSC (and in fact, any noisy channel that gives OT)
 - Using (a slightly modified) IPS compiler [IPS'08] to compile:



- Constant rate OT from BSC (and in fact, any noisy channel that gives OT)
 - Using (a slightly modified) IPS compiler [IPS'08] to compile:
 - "Outer protocol" [DI'06+CC'06] for n instances of OT



- Constant rate OT from BSC (and in fact, any noisy channel that gives OT)
 - Using (a slightly modified) IPS compiler [IPS'08] to compile:
 - "Outer protocol" [DI'06+CC'06] for n instances of OT
 - "Inner protocol" [GMW'87+HIKN'08] for implementing its servers



- Constant rate OT from BSC (and in fact, any noisy channel that gives OT)
 - Using (a slightly modified) IPS compiler [IPS'08] to compile:
 - "Outer protocol" [DI'06+CC'06] for n instances of OT
 - "Inner protocol" [GMW'87+HIKN'08] for implementing its servers
 - For "watchlist channels" a new <u>constant-rate protocol for string-OT</u> from noisy channel (previously, only from an erasure channel)

- Constant rate OT from BSC (and in fact, any noisy channel that gives OT)
 - Using (a slightly modified) IPS compiler [IPS'08] to compile:
 - "Outer protocol" [DI'06+CC'06] for n instances of OT
 - "Inner protocol" [GMW'87+HIKN'08] for implementing its servers
 - For "watchlist channels" a new <u>constant-rate protocol for string-OT</u> from noisy channel (previously, only from an erasure channel)
 - Uses a homomorphic arithmetic encoding scheme

- Constant rate OT from BSC (and in fact, any noisy channel that gives OT)
 - Using (a slightly modified) IPS compiler [IPS'08] to compile:
 - "Outer protocol" [DI'06+CC'06] for n instances of OT
 - "Inner protocol" [GMW'87+HIKN'08] for implementing its servers
 - For "watchlist channels" a new <u>constant-rate protocol for string-OT</u> from noisy channel (previously, only from an erasure channel)
 - Uses a homomorphic arithmetic encoding scheme
 - Relies on "fuzzy to shaky" security

- Constant rate OT from BSC (and in fact, any noisy channel that gives OT)
 - Using (a slightly modified) IPS compiler [IPS'08] to compile:
 - "Outer protocol" [DI'06+CC'06] for n instances of OT
 - "Inner protocol" [GMW'87+HIKN'08] for implementing its servers
 - For "watchlist channels" a new <u>constant-rate protocol for string-OT</u> from noisy channel (previously, only from an erasure channel)
 - Uses a homomorphic arithmetic encoding scheme
 - Relies on "fuzzy to shaky" security