≜UCL

Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups

Masayuki Abe, NTT Jens Groth, University College London Kristiyan Haralambiev, NYU Miyako Ohkubo, NICT

Mathematical structures in cryptography

- Cyclic prime order group \mathbb{G}
- Useful mathematical structure
 - ElGamal encryption
 - Pedersen commitments
 - Schnorr proofs

— ...

Pairing-based cryptography

- Groups G, H, T with bilinear map e: $G \times H \rightarrow T$
- Additional mathematical structure
 - Identity-based encryption
 - Short digital signatures
 - Non-interactive zero-knowledge proofs

- ...

Bilinear group

 Can efficiently compute group operations, evaluate bilinear map and decide membership

Structure-preserving signatures with generic signer

- The public verification key, the messages and the signatures consist of group elements in G and H
- The verifier evaluates pairing product equations
 - Accept signature if

$$e(M,V_1)e(S_1,V_2) = 1$$

 $e(S_2,V_2)e(M,V_2) = e(G,V_3)$

• The signer only uses generic group operations – Signature of the form $(S_1, S_2, ...)$ where $S_1 = M^{\alpha}G^{\beta}, S_2 = ...$

Structure-preserving signatures

- Composes well with other pairing-based schemes
 - Easy to encrypt structure-preserving signatures
 - Easy use with non-interactive zero-knowledge proofs
- Applications

. . .

- Group signatures
- Blind signatures

Results

- Lower bound
 - A structure-preserving signature consists of at least 3 group elements
- Construction
 - A structure-preserving signature scheme matching the lower bound

Lower bound

- Theorem
 - A structure-preserving signature made by a generic signer consists of at least 3 group elements
- Proof uses the *structure-preservation* and the fact that the signer only does *generic group* operations
 - Not information-theoretic bound
 - Shorter non-structure-preserving signatures exist
 - Uses generic group model on signer instead of adversary

Proof overview

- Without loss of generality lower bound for $M\!\in\!\mathbb{G}$
- Theorems
 - Impossible to have unilateral structure-preserving signatures (all elements in G or all elements in H)
 - Impossible to have a single verification equation (for example $e(S_2,V_2)e(M,V_2) = 1$)
 - Impossible to have signatures of the form (S,T) ${\in}\,\mathbb{G}{\times}\mathbb{H}$

Unilateral signatures are impossible

A similar argument shows there are no unilateral signatures $(S_1, S_2, ..., S_k) \in \mathbb{G}^k$

- There is no single element signature $S \in G$ for $M \in G$
- Proof

Case I

- If $S \in G$ the verification equations are wlog of the form e(M, V)e(S, W) = Z
- Given two signatures S_1 , S_2 on random M_1 , M_2 we have for all the verification equations $e(M_1^2 M_2^{-1}, V)e(S_1^2 S_2^{-1}, W) = Z$
- This means $S_1^2 S_2^{-1}$ is a signature on $M_1^2 M_2^{-1}$

Unilateral signatures are impossible

A similar argument shows there are no unilateral signatures $(T_1, T_2, ..., T_k) \in \mathbb{H}^k$

- Case II
 - There is no single element signature $\mathsf{T}{\in}\mathbb{H}$ for $\mathsf{M}{\in}\mathbb{G}$
- Proof
 - A generic signer wlog computes T = H^t where t is chosen independently of M
 - Since T is independent of M either the signature scheme is not correct or the signature is valid for any choice of M and therefore easily forgeable

A single verification equation is impossible

• Theorem

- There is no structure-preserving signature for message $M \in G$ with a single verification equation
- Proof
 - Let the public key be $(U_1, U_2, \dots, V_1, V_2, \dots)$
 - The most general verification equation is of the form $\prod e(S_i, T_j)^{a_{ij}} \prod e(S_i, V_j)^{b_{ij}} \prod e(M, T_j)^{c_j} \prod e(M, V_j)^{d_j} \prod e(U_i, T_j)^{e_{ij}} = Z$
 - Using linear algebra we can show the scheme is vulnerable to a random message attack

No signature with 2 group elements

- Theorem
 - There are no 2 group element structure-preserving signatures for $M\!\in\!\mathbb{G}$
- Proof strategy
 - Since signatures cannot be unilateral we just need to rule out signatures of the form (S,T) $\in \mathbb{G} \times \mathbb{H}$
 - Generic signer generates them as S = $M^{\alpha}G^{\beta}$ and T = H^{τ}
 - Proof shows the correctness of the signature scheme implies all the verification equations collapse to a single verification equation, which we know is impossible

No signature with 2 group elements

- Proof sketch
 - Consider wlog a verification equation of the form $e(S,T)^{a}e(M,T)^{b}e(U,T)e(S,V)e(M,W) = Z$
 - Taking discrete logarithms and using the bilinearity of e ast + bmt + ut + sv + mw = z
 - Using that the generic signer generates $S = M^{\alpha}G^{\beta}$ and T = H^{τ} we have s = α m+ β and t = τ giving us $(a\alpha + b\tau + \alpha v + w)m + a\beta\tau + u\tau + \beta v = z$
 - A generic signer does not know m, so the correctness of the signature scheme implies

 $a\alpha + b\tau + \alpha v + w = 0$ $a\beta\tau + u\tau + \beta v = z$

No signature with 2 group elements

- Proof sketch cont'd
 - Each verification equation corresponds to a pair of equalities of the form

 $a\alpha + b\tau + \alpha\nu + w = 0$

 $a\beta\tau + u\tau + \beta\nu = z$

- Using linear algebra we can show that all these pairs of equalities are linearly related
- So they are equivalent to a single verification equation
- By our previous theorem a single verification equation is vulnerable to a random message attack
- Therefore 2 group element structure-preserving signatures can be broken by a random message attack

Optimal structure-preserving signatures

- Signature scheme
 - Messages $(M_1, M_2, \dots, N_1, N_2, \dots) \in \mathbb{G}^{k_M} \times \mathbb{H}^{k_N}$
 - Public key $(U_1, U_2, \dots, V, W_1, W_2, \dots, Z) \in \mathbb{G}^{k_M} \times \mathbb{H}^{k_N+2}$
 - Signing key $(u_1, u_2, ..., v, w_1, w_2, ..., z) \in (\mathbb{Z}_p^{*})^{k_M + k_N + 2}$
 - Signatures (R,S,T) $\in \mathbb{G}^2 \times \mathbb{H}$

$$R = G^r \qquad S = G^{z-rv} \prod M_i^{-w_i} \quad T = H \left(\prod N_i^{-u_i} \right)^{\frac{1}{r}}$$

– Verification

$$e(R,V)e(S,H)\prod e(M_i,W_i) = 1$$

$$e(R,T)\prod e(U_i,N_i) = e(G,H)$$

Optimal structure-preserving signatures

- Optimal
 - Signature size is 3 group elements
 - Verification uses 2 pairing product equations
- Security
 - Strongly existentially unforgeable under adaptive chosen message attack
 - Proven secure in the generic group model

Further results

- One-time signatures (unilateral messages)
 Unilateral, 2 group elements, single verification equation
- Non-interactive assumptions (q-style)
 - 4 group elements for unilateral messages
 - 6 group elements for bilateral messages
- Rerandomizable signatures
 - 3 group elements for unilateral messages

Summary

- Lower bound
 - Structure-preserving signatures created by generic signers consist of at least 3 group elements
- Optimal construction
 - Structure-preserving signature scheme with 3 group element signatures that is sEUF-CMA in the generic group model