Round Optimal Blind Signatures

Sanjam Garg Vanishree Rao Amit Sahai UCLA

Dominique Schroeder* Dominique Unruh

University of Maryland University of Tartu

(http://eprint.iacr.org/2011/264)

*Postdoctoral Fellow of the DAAD

- User cannot produce more signatures then #
- interactions

Blind signatures [C85]

- Signer does not "see" the message m
- User cannot produce more signatures then # interactions

Applications

- eCash
- eVoting
 - User cannot vote for an additional candidate (unforgeability), voting agency does not see the vote (blindness)
 - FIFA world soccer cup selected in 2002 Most Valuable Player using Votopia
- Anonymous credentials
 - Microsoft U-PROVE
 - National Strategy for Trusted Identities in Cyberspace NISTIC

What's next?

- Security model
- Our contribution
- Related work
- Construction
- Relation to FS [10]

Security model

Unforgeability [JLO97,PS00]

Security model

Blindness [JLO97,PS00]

Known constructions

over 80 papers published

	2 moves (optimal): Chaum, Boldyreva: interactive assumption, ROM Fischlin: CRS	
	Beintcheval Stern, Abe ROM	
	4 moves: Okamoto TCC06	
CRYPTO 2011	Dominique Schröder	9

Reduce the round complexity of a known scheme.

Prove the security of a known two move scheme in the standard model.

Construct a completely new scheme.

Prove the security of a known two move scheme in the standard model.

Fischlin, S[FS10]:

No security reduction for one of the known two/three moves schemes to any non-interactive problem in the standard model.

EUROCRYPT 2010

Extension: Pass (STOC 11): unique blind signature.

(Caution: actual results may vary)

First stab

- Idea: Use Yao's garbled circuit with OT
- Yao allows private evaluation of any general circuit

Consider the signature evaluation circuit

- We also need a 2 round OT protocol [NP01, AIR01]
 - This protocol is not simulatable
 - Computational security for sender and statistical security for receiver

2) OT is not simulatable

Cheating signer

- What can a cheating signer do to break blindness?
 - Encode any arbitrary function inside the Yao's garbled circuit.

 Manipulate the randomness used in signing to break blindness

Enforcing correct behavior

- Signer additionally needs to prove correctness of its actions.
- Idea: Use a proof protocol
 - What proof protocol can be used?
 - Standard ZK requires 3 rounds

 Zero Knowledge – For every cheating verifier V there exists a simulator S running in super poly time that can simulate the view of the verifier

- We have limited the signer in cheating by
 - Using deterministic signatures
 - Enforcing honest behavior by a Zero Knowledge protocol
- Have we solved the problem of cheating signer?
 - Subtle issue remains: in proof of security, need to extract signatures
 - Solution: Use super-poly-time extraction
 - But can avoid the use of super-poly-time by specific rewinding technique (see paper)

Cheating user – arguing unforgeability

- Simulator simulating the view of the verifier is super-polynomial
- Deal with this by using signature scheme that is unforgeable even by an adversary secure against super-poly time adversaries. (complexity leveraging)
- This allows us to argue unforgeability.

Relation to FS[10]

- FS[10] proved impossibility of three round blind signature schemes
- Restricted to blind signature schemes with some technical properties
 - Blindness holds with respect to a forgery oracle as well
- Our scheme avoids this, but still achieves full security.

Open Problems

- Improvements in terms of assumptions
 - We require sub-exponentially hard OWFs, trapdoor permutations and DDH

(Impossible from OWP: Katz, S, Yerukhimovich, TCC 2011)

• Efficient constructions

Thanks

Vanishree Rao

Amit Sahai

Dominique Unruh