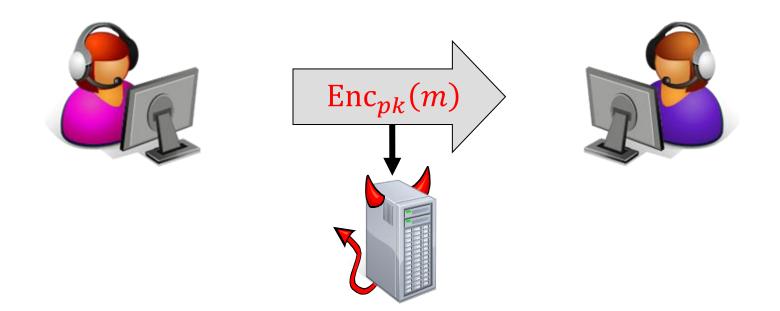
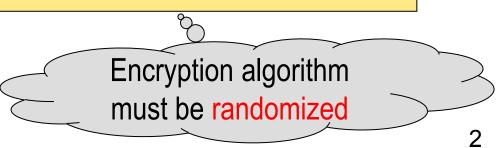
Better Security for Deterministic Public-Key Encryption: The Auxiliary-Input Setting


Zvika Brakerski

Weizmann Institute


Microsoft Research Silicon Valley

Probabilistic Encryption

Semantic Security [GM82]:

No adversary can learn any meaningful information on m

Deterministic Encryption

Efficiency: short ciphertexts

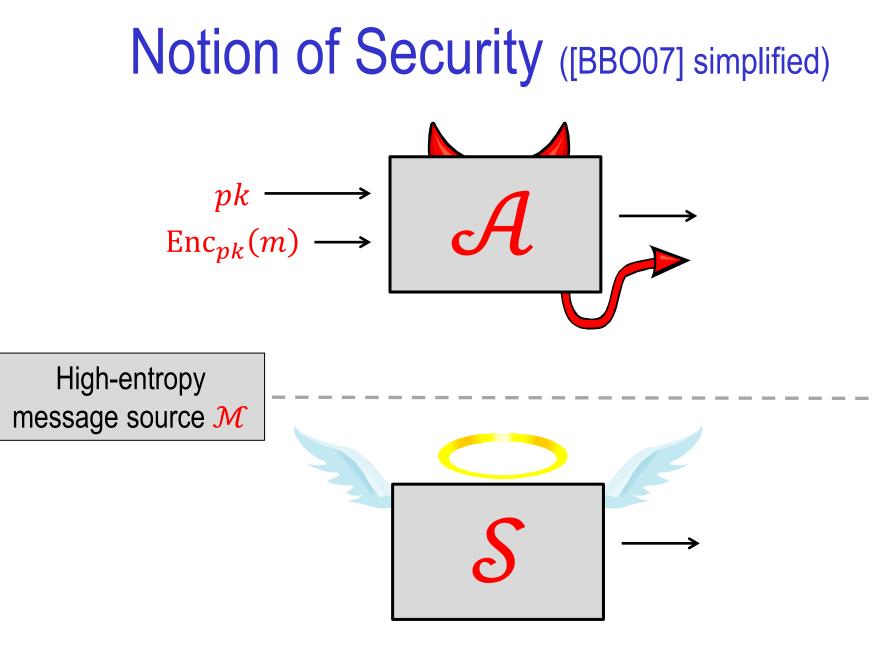
Each *pk* may even define a permutation

Functionality: searchable encryption

- Each *pk* defines a one-to-one mapping
- Easy to check whether c encrypts m relative to pk

What About Security?

Inherent limitation:


- Each *pk* defines a one-to-one mapping
- Easy to check whether c encrypts m relative to pk

Security for high-entropy messages [BB007]

- Inspired by [RW02, DS05] in the symmetric-key setting
- Exciting line of research [BFO08, BFOR08, BBNRSSY09, O'N10,...]
- Meaningful for various applications (e.g., key encapsulation)

 $(\operatorname{Enc}_{pk}(key), \operatorname{AES}_{key}(0), \operatorname{AES}_{key}(1), ...)$

GAU

The Auxiliary-Input Setting

 $(\operatorname{Enc}_{pk}(key), \operatorname{AES}_{key}(0), \operatorname{AES}_{key}(1), ...)$

Encryption as a building block of a larger system

- Additional information is available
- Does key have any entropy given (AES_{key}(0), AES_{key}(1), ...)?
- No security guarantees from current models and schemes (noticed already by [DS05, BBO07])

This Talk: Better Security

Model

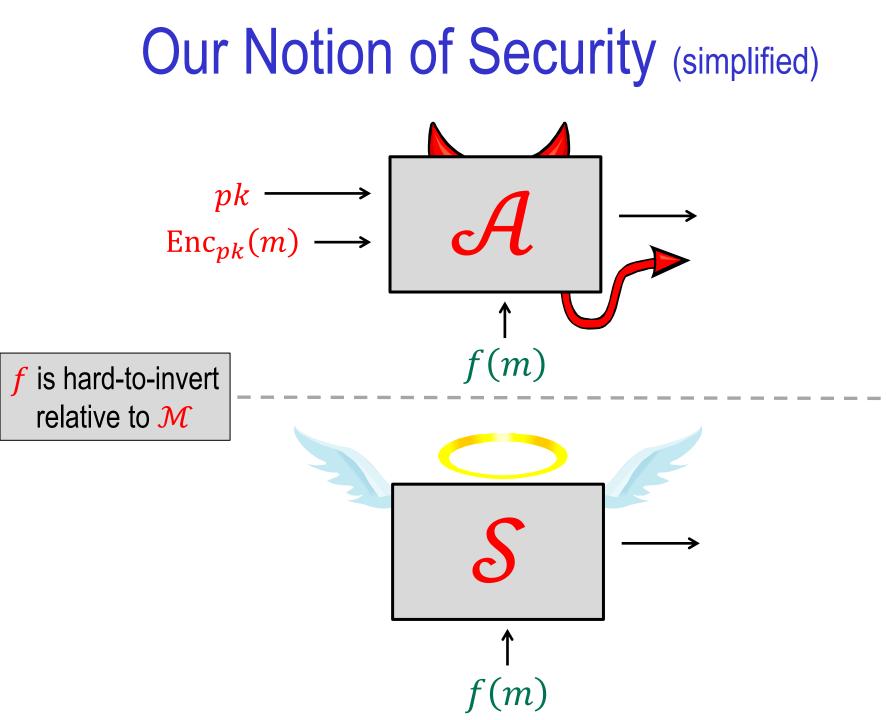
- Deterministic encryption in the auxiliary-input setting
- Hard-to-invert auxiliary inputs
 - Generalizes the high-entropy setting

Constructions

- Security w.r.t all auxiliary inputs that are sub-exponentially hard
- Based on standard hardness assumptions
 - d-Linear for any $d \ge 1$ (Decisional Diffie-Hellman,...)
 - Subgroup indistinguishability [BG10] (Quadratic Residuosity, Composite Residuosity,...)

Outline

- Hard-to-invert auxiliary inputs
- Security in the auxiliary-input setting
- Construction based on *d*-Linear


Hard-to-Invert Auxiliary Inputs

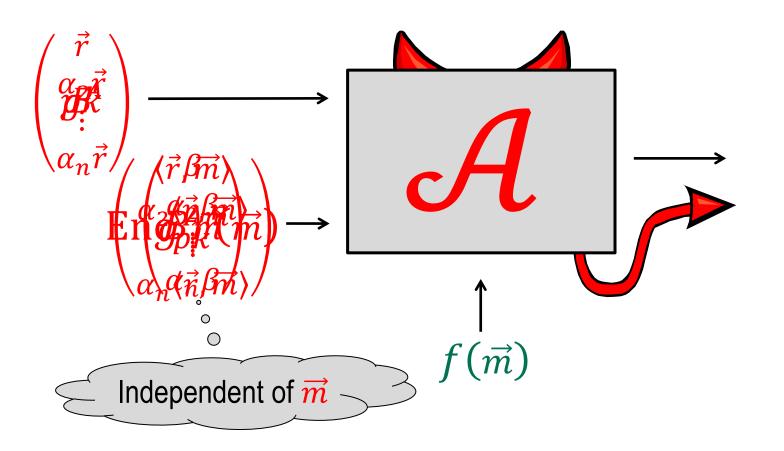
Definition

A function f is ϵ -hard-to-invert relative to \mathcal{X} if for any efficient algorithm A it holds that $\Pr_{\substack{x \leftarrow \mathcal{X}}} \left[A(f(x)) = x \right] \leq \epsilon$

$$f(key) = (AES_{key}(0), AES_{key}(1), ...)$$

- A is required to output the exact same x (and not any $x' \in f^{-1}(f(x))$ as with one-wayness)
- The source of hardness may be any combination of:
 - Information-theoretic hardness (*f* has many collisions)
 - Computational hardness (*f* is injective)

Construction Based on *d*-Linear


- Based on the lossy trapdoor function of [FGKRS10]
- **G** group of order p generated by g

Key generation

Sample
$$A \leftarrow \mathbb{Z}_p^{n \times n}$$

Output $sk = A^{-1}$ and $pk = g^A \stackrel{\circ}{\in} \mathbb{G}^{n \times n}$

Encryption
Given
$$\vec{m} \in \{0,1\}^n$$
 output $g^{A\vec{m}} \in \mathbb{G}^n$
 $(g^{A\vec{m}})_i = g^{\sum_j a_{ij}m_j} = \prod_j (g^A)^{m_j}_{ij}$
Decryption
Output $m \in \{0,1\}^n$

Proof of Security

- [BHHO08,NS09]: *d*-Linear $\Rightarrow g^A \approx_c g^B$ where rank(B) = d
- [GL89,DGKPV10]: f is ϵ -hard-to-invert relative to \mathcal{M}
 - \Rightarrow (\vec{r} , $\langle \vec{r}, \vec{m} \rangle$) is pseudorandom

Additional Features of Our Schemes

Security for multiple users & related messages

- Any number of users, linearly-related messages
- Without requiring sub-exponential hardness

 $\left(\operatorname{Enc}_{pk_1}(m_1), \dots, \operatorname{Enc}_{pk_n}(m_n)\right)$

Homomorphic properties

Additions and one multiplication

$$g^{Am_{1}} \cdot g^{Am_{2}} = g^{A(m_{1}+m_{2})}$$
$$e\left(g^{Am_{1}}, g^{(Am_{2})^{T}}\right) = e(g, g)^{Am_{1}m_{2}^{T}A^{T}}$$

Conclusions and Open Problems

Deterministic encryption in the auxiliary-input setting
Meaningful security for hard-to-invert auxiliary inputs

Open problems

- Eliminating sub-exponential hardness requirement
- Security beyond linearly-related messages
- Dealing with pk-dependent messages and auxiliary inputs

