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LWE Background

* |Introduced by Regev [RO5]

e g =2, Bernoulli noise -> Learning Parity with Noise (LPN)

 Extremely successful in Cryptography

IND-CPA Public Key Encryption [Regev05]

Injective Trapdoor Functions/ IND-CCA encryption [PWO08]
Strongly Unforgeable Signatures [GPV08, CHKP10]

(Hierarchical) Identity Based Encryption [GPV08, CHKP10, ABB10]
Circular- Secure Encryption [ACPS09]

Leakage-Resilient Cryptography [AGV09, DGK+10, GKPV10]
(Fully) Homomorphic Encryption [GHV10, BV11b]



LWE: Search & Decision

n: size of the secret, m: #samples

Public parameters g: modulus, X:error distribution

Find (Search])
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Search-to-Decision reductions (S-to-D)

Why do we care?
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- all LWE-based constructions
rely on decisional LWE

- strong indistinguishability
flavor of security definitions

- their hardness is better
understood




Search-to-Decision reductions (S-to-D)

Why do we care?

f \ - N
decision search
problems = | problems

N~ /| .\ J
- all LWE-based constructions . |
rely on decisional LWE - their hardness is better
- strong indistinguishability understood

flavor of security definitions

" S-to-D reductions: “Primitive [1is ABC-Secure assuming
search problem P is hard”



Our results

 Toolset for studying Search-to-Decision reductions
for LWE with polynomially bounded noise.
- Subsume and extend previously known ones
- Reductions are in addition sample-preserving

* Powerful and usable criteria to establish Search-to-
Decision equivalence for general classes of
knapsack functions

 Use known techniques from Fourier analysis in a
new context. Ideas potentially useful elsewhere



Our results

* Powerful and usable criteria to establish Search-to-
Decision equivalence for general classes of
knapsack functions



Bounded knapsack functions over groups

Parameters

- integer m

- finite abelian group G

-set S={0,..., s - 1} of integers, s: poly(m)

(Random) Knapsack family S™ — &
Sampling g = (g1,...,9m) where ¢g; €r G

Evaluation g(X) —g-X= Zm

1=

| Tigi cG

Example
(random) modular subset sum: S ={0,1}, G =Zy,



Knapsack functions: Computational problems
‘D distribution over S™ (G, D) public

(search) Goal: Find x

o _ Input: Samples from either:
Distinguish Fp = (gjg : X) (gz cp G, x ~ D)
(decision) Fu=(g,u) (¢g; €r G,u €r G)

Goal: Label the samples

Notation: (G, D) family of knapsacks over G with distribution D

Glossary: If decision problem is hard, function is pseudorandom (PRG)
If search problem is hard, function is One-Way
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Search-to-Decision: Known results

Decision as hard as search when...

[Impagliazzo, Naor 89] : (random) modular subset sum
(G = Z, cyclic group
D uniform over S™ = {0,1}™

|Fischer, Stern 96]: syndrome decoding
G = 7%, vector group

D uniform over all m-bit vectors with Hamming weight w.
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Our contribution: S-to-D for general knapsack

(G, D) : knapsack family with range G and input
distribution D over {0,...,s — 1} s:poly(m)

K(G/dG, D)
PRG Vd < S

[’C(Ga )

One-Way
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Our contribution: S-to-D for general knapsack

(G, D) : knapsack family with range G and input
distribution D over {0,...,s — 1} s:poly(m)

~Main Theorem ™
K(G,D) K(G/dG, D) K(G, D)
&[ One-Way ] + PRG Vd < s jl> PRG 5
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Our contribution: S-to-D for general knapsack

~Main Theorem N
K(G,D) K(G/dG, D) K(G, D)
[ One-Way ] T PRG Vd < s :> PRG
\ '
K(@Yda@ D)
PRG < s

Much less restrictive than it seems

&

In most interesting cases holds in a strong information

theoretic sense
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S-to-D for general knapsack: Examples

K(G, D) K(G, D)
[[One-Way] :>[ PRG ]} Subsumes

[IN89,FS96]

/ and more

Any group G and any distribution over {0,1}™

Any group G with prime exponent and any distribution

And many more...

using known information theoretical tools (LHL, entropy bounds etc)
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Proof Sketch

[Inver"rer] [ Dis‘ringuisher}
Input: g, gx Input: Fp or Fyy
Goal: Find x Goal: Distinguish
Reminder

Fp = (8,8 %) (9i €Er,x ~ D)
Fu = (g,u) (9; €r,u €r G)



Proof Sketch

step 1 step 2
Inverter <= <= Distinguisher

Input: g, g'x Input: g, gx, r Input: Fp or Fyy
Goal: Find x Goal: find xr (mod t) Goal: Distinguish

Proof follows outline of [IN89]

Step 1: Goldreich—Levin replaced by general conditions for inverting
given noisy predictions for x:r (mod t) for possibly composite t

-Tool: learning heavy Fourier coefficients of general functions [AGS03]

Step 2: Given a distinguisher, we get a predictor satisfying general
conditions of step 1.

Proof significantly more involved than [IN89]
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Our results

 Toolset for studying Search-to-Decision reductions
for LWE with polynomially bounded noise.
- Subsume and extend previously known ones
- Reductions are in addition sample-preserving



What about LWE?

LW E, m.qx
C ) ~ h
A AL
" N——— ——/
—

G is the parity check matrix for the code generated by A

G-A=0

(mod g¢)

Error e from LWE = unknown input of the knapsack

If Ais “random”, G is also “random”




What about LWE?
K(Zy =", X™) LW Brnm,aix

bed) )| = (A [A]D+

The transformation works in the other direction as well

Putting all the pieces together...
Search Search Decision Decision
(A As +e ) <= (G, Ge) @ (G’, G'e) <= (A’ A’s’ + e)

S-to-D for knapsack




LWE Implications

LWE reductions follow from knapsacks reductions over Zg "

All known Search-to-Decision results for LWE/LPN with
bounded error [BFKL93, RO5, ACPS09, KSS10] follow as a direct

corollary

Search-to-Decision for new instantiations of LWE
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LWE: Sample Preserving S-to-D

Previous reductions

(" )

poly(m) . N
search A b| <= m{ decision

L/

V4
Ours: sample-preserving

If we can solve decision LWE given m samples, we can solve search
LWE given m samples

Caveat: Inverting probability goes down (seems unavoidable)
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Why care about #samples?

" |WE-based schemes often expose a certain number of
samples, say m

=  With sample-preserving S-to-D we can base their security
on the hardness of search LWE with m samples

"=  Concrete algorithmic attacks against LWE [MIR0O9, AG11]
are sensitive to the number of exposed samples

 for some parameters, LWE is completely broken by [AG11] if
number of given samples above a certain threshold



The Future

Open problems

NEXT EXIT N

Sample preserving reductions for

1. LWE with unbounded noise
- used in various settings [Pei09, GKPV10, BV11b, BPR11]
- some reductions known [Pei09] but not sample-preserving

2. ring LWE
- Samples (a, a*s+e) where a, s, e drawn from R=Zq[x]/<f(x)>

- non sample-preserving reductions known [LPR10]
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