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Learning With Errors (LWE) 
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LWE Background 

• Introduced by Regev [R05] 

• q = 2, Bernoulli noise -> Learning Parity with Noise (LPN) 

• Extremely successful in Cryptography 
• IND-CPA Public Key Encryption [Regev05] 

• Injective Trapdoor Functions/ IND-CCA encryption [PW08] 

• Strongly Unforgeable Signatures [GPV08, CHKP10] 

• (Hierarchical) Identity Based Encryption [GPV08, CHKP10, ABB10] 

• Circular- Secure Encryption [ACPS09] 

• Leakage-Resilient Cryptography [AGV09, DGK+10, GKPV10] 

• (Fully) Homomorphic Encryption [GHV10, BV11b] 



LWE: Search & Decision 
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Public parameters 

Given:    

Goal: find s (or e) 

Find (Search) 

Given:    

Distinguish (Decision) 

Goal: decide if 
or 

n: size of the secret, m: #samples 
q: modulus,     :error distribution 



Search-to-Decision reductions (S-to-D) 
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Why do we care? 

- all LWE-based constructions 
rely on decisional LWE 
- strong indistinguishability 
flavor of security definitions 
        

- their hardness is better 
understood 

decision 

problems 

search 

problems 



Search-to-Decision reductions (S-to-D) 
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Why do we care? 

- all LWE-based constructions 
rely on decisional LWE 
- strong indistinguishability 
flavor of security definitions 

 S-to-D reductions: “Primitive Π is ABC-Secure assuming 
search problem P is hard” 

- their hardness is better 
understood 

decision 

problems 

search 

problems 



Our results 
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• Powerful and usable criteria to establish Search-to-
Decision equivalence for general classes of  
knapsack functions 

• Use known techniques from Fourier analysis in a 
new context. Ideas potentially useful elsewhere 

• Toolset for studying Search-to-Decision reductions 
for LWE with polynomially bounded noise. 
- Subsume and extend previously known ones 
- Reductions are in addition sample-preserving  
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Bounded knapsack functions over groups 

Parameters  
- integer m 

- finite abelian group G 

- set S = {0,…, s - 1} of integers, s: poly(m) 
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(Random) Knapsack family 

Sampling     where     

Evaluation 

Example 

(random) modular subset sum: 



Knapsack functions: Computational problems 
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invert 

(search) 
Input:              

Goal: Find x 

Distinguish 

(decision) 

Input:  Samples from either: 

 

 

Goal: Label the samples 

Glossary: If decision problem is hard, function is pseudorandom (PRG)  
     If search problem is hard, function is One-Way  

distribution over  public 

Notation:            family of knapsacks over G with distribution 



Search-to-Decision: Known results 
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Decision as hard as search when… 

[Fischer, Stern 96]: syndrome decoding 

     , vector group 

      uniform over all m-bit vectors with Hamming weight w. 

[Impagliazzo, Naor 89] : (random) modular subset sum 

       , cyclic group 

       uniform over 



Our contribution: S-to-D for general knapsack 
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One-Way 

   : knapsack family with range G and input 
distribution      over  

 
PRG 

 
PRG   + 

s: poly(m) 
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One-Way 

 
PRG 

 
PRG   + 

Main Theorem 

Our contribution: S-to-D for general knapsack 

   : knapsack family with range G and input 
distribution      over  s: poly(m) 
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One-Way 

 
PRG 

 
PRG   + 

Main Theorem 

 
PRG   

Much less restrictive than it seems 

✔ 

In most interesting cases holds in a strong information 
theoretic sense 

Our contribution: S-to-D for general knapsack 
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S-to-D for general knapsack: Examples 

Any group G and any distribution over 

Any group G with prime exponent and any distribution 

Subsumes 
[IN89,FS96] 
and more 

 
One-Way 

 
PRG 

And many more… 

using known information theoretical tools (LHL, entropy bounds etc) 



Proof Sketch  
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Reminder 

Input:  
Goal: Distinguish 

Distinguisher Inverter 

Input: g , g.x 
Goal: Find x 



Proof follows outline of [IN89] 
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Input:  
Goal: Distinguish 

Distinguisher Predictor 

Input: g , g.x, r 
Goal: find x.r (mod t) 

Inverter 

Input: g , g.x 
Goal: Find x 

Step 1: Goldreich–Levin replaced by general conditions for inverting 
given noisy predictions for x.r (mod t) for possibly composite t  

-Tool: learning heavy Fourier coefficients of general functions [AGS03] 

<= <= 

Proof Sketch  
step 1 step 2 

Step 2: Given a distinguisher, we get a predictor satisfying general 
conditions of step 1.  

Proof significantly more involved than [IN89] 
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• Powerful and usable criteria to establish Search-to-
Decision equivalence for general classes of  
knapsack functions 

• Use known techniques from Fourier analysis in a 
new context. Ideas potentially useful elsewhere 
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for LWE with polynomially bounded noise. 
- Subsume and extend previously known ones 
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What about LWE? 
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s 
e + A 

, 
e , g1 g2…gm 

G 
A g1 g2…gm 

G is the parity check matrix  for the code generated by A 

If A is “random”, G is also “random” 

Error e from LWE  unknown input of the knapsack 

m 

n 



What about LWE? 
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e , g1 g2…gm 

G 

g1 g2…gm 

The transformation works in the other direction as well 

s 
e + A 

, 
A 

(A, As +e ) <= (G, Ge)   <=  (G’, G’e) <= (A’,A’s’ + e) 

Search Search Decision Decision 

S-to-D for knapsack 

Putting all the pieces together… 



LWE Implications 
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LWE reductions follow from knapsacks reductions over 

All known Search-to-Decision results for LWE/LPN with 
bounded error [BFKL93, R05, ACPS09, KSS10] follow as a direct 
corollary 

Search-to-Decision for new instantiations of LWE 



LWE: Sample Preserving S-to-D 
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If we can solve decision LWE given m samples, we can solve search 
LWE given m samples 

Caveat: Inverting probability goes down (seems unavoidable) 

Ours: sample-preserving 

Previous reductions 

A A’ search 
decision 

poly(m) 
m <= b 

, 

b’ , 



Why care about #samples? 
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 LWE-based schemes often expose a certain number of 
samples, say m 

 With sample-preserving S-to-D we can base their security 
on the hardness of search LWE with m samples 

 Concrete algorithmic attacks against LWE [MR09, AG11] 
are sensitive to the number of exposed samples 

• for some parameters, LWE is completely broken by [AG11] if 
number of given samples above a certain threshold 



Open problems 

Sample preserving reductions for 
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1. LWE with unbounded noise 

- used in various settings [Pei09, GKPV10, BV11b, BPR11] 

- some reductions known [Pei09] but not sample-preserving 

2. ring LWE 

- Samples (a, a*s+e) where a, s, e drawn from R=Zq[x]/<f(x)> 

- non sample-preserving reductions known [LPR10] 


