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Context

Lattices provide exponentially hard problems suitable for
public key cryptography.

Best known attacks on lattice-based cryptosystems rely on
blockwise lattice reduction algorithms.

Understanding these algorithms helps assessing the security of
LBC.

The most widely used reduction algorithm is BKZ.

No reasonable time bound was known about BKZ.
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Contributions

We give the first worst-case analysis of BKZ.

We introduce a new BKZ model.

It gives new tools for understanding lattice algorithms.
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Hermite factor of B :

HF(b1, . . . , bn) =
‖b1‖

(det L)1/n

Goal of lattice reduction: find a basis with small HF.

If b1 is a shortest vector 6= 0, then HF(b1, . . . , bn) ≤
√
γn,

with γn = Hermite constant ≤ n.

Analyzing Blockwise Lattice Algorithms using Dynamical Systems 4/16



Lattices

b1

b2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

Hermite factor of B :

HF(b1, . . . , bn) =
‖b1‖

(det L)1/n

Goal of lattice reduction: find a basis with small HF.

If b1 is a shortest vector 6= 0, then HF(b1, . . . , bn) ≤
√
γn,

with γn = Hermite constant ≤ n.

Analyzing Blockwise Lattice Algorithms using Dynamical Systems 4/16



Lattices

b1

b2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

Hermite factor of B :

HF(b1, . . . , bn) =
‖b1‖

(det L)1/n

Goal of lattice reduction: find a basis with small HF.

If b1 is a shortest vector 6= 0, then HF(b1, . . . , bn) ≤
√
γn,

with γn = Hermite constant ≤ n.

Analyzing Blockwise Lattice Algorithms using Dynamical Systems 4/16



Hierarchy of lattice reductions in dimension n

xi = log ‖b∗
i
‖ for i ≤ n (b∗1 , . . . , b

∗

n = Gram-Schmidt basis of B).
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Known results on blockwise algorithms

BKZ

Schnorr (1987): first hierarchies between LLL and HKZ.

Schnorr and Euchner (1994): algorithm for BKZ-reduction.

Gama and Nguyen (2008): BKZ behaves badly when the
block size is ≥ 25.

Other reductions in time 2O(β) × Poly(n):

Schnorr (1987) : Semi-block-2β-reduction.

Gama et al. (2006): Block-Rankin-reduction.

Gama and Nguyen (2008): Slide-reduction.

...but BKZ remains the most efficient in practice.

Analyzing Blockwise Lattice Algorithms using Dynamical Systems 6/16



Known results on blockwise algorithms

BKZ

Schnorr (1987): first hierarchies between LLL and HKZ.

Schnorr and Euchner (1994): algorithm for BKZ-reduction.

Gama and Nguyen (2008): BKZ behaves badly when the
block size is ≥ 25.

Other reductions in time 2O(β) × Poly(n):

Schnorr (1987) : Semi-block-2β-reduction.

Gama et al. (2006): Block-Rankin-reduction.

Gama and Nguyen (2008): Slide-reduction.

...but BKZ remains the most efficient in practice.

Analyzing Blockwise Lattice Algorithms using Dynamical Systems 6/16



Known results on blockwise algorithms

BKZ

Schnorr (1987): first hierarchies between LLL and HKZ.

Schnorr and Euchner (1994): algorithm for BKZ-reduction.

Gama and Nguyen (2008): BKZ behaves badly when the
block size is ≥ 25.

Other reductions in time 2O(β) × Poly(n):

Schnorr (1987) : Semi-block-2β-reduction.

Gama et al. (2006): Block-Rankin-reduction.

Gama and Nguyen (2008): Slide-reduction.

...but BKZ remains the most efficient in practice.

Analyzing Blockwise Lattice Algorithms using Dynamical Systems 6/16



Known results on blockwise algorithms

BKZ

Schnorr (1987): first hierarchies between LLL and HKZ.

Schnorr and Euchner (1994): algorithm for BKZ-reduction.

Gama and Nguyen (2008): BKZ behaves badly when the
block size is ≥ 25.

Other reductions in time 2O(β) × Poly(n):

Schnorr (1987) : Semi-block-2β-reduction.

Gama et al. (2006): Block-Rankin-reduction.

Gama and Nguyen (2008): Slide-reduction.

...but BKZ remains the most efficient in practice.

Analyzing Blockwise Lattice Algorithms using Dynamical Systems 6/16



Known results on blockwise algorithms

BKZ

Schnorr (1987): first hierarchies between LLL and HKZ.

Schnorr and Euchner (1994): algorithm for BKZ-reduction.

Gama and Nguyen (2008): BKZ behaves badly when the
block size is ≥ 25.

Other reductions in time 2O(β) × Poly(n):

Schnorr (1987) : Semi-block-2β-reduction.

Gama et al. (2006): Block-Rankin-reduction.

Gama and Nguyen (2008): Slide-reduction.

...but BKZ remains the most efficient in practice.

Analyzing Blockwise Lattice Algorithms using Dynamical Systems 6/16



BKZ

Algorithm (BKZβ, modified version)

Input: B of dimension n.

Repeat ... times

For i from 1 to n − β + 1 do

Size-reduce B .

HKZ-reduce a projection of the block (bi , . . . , bi+β−1).
Report the transformation on B .

Termination?
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Progress made during the execution of BKZ
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Experience on 64 LLL-reduced knapsack-like matrices (n = 108, β = 24).
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Our result

γβ = Hermite constant ≤ β.
L a lattice with basis (b1, . . . , bn).

Theorem

After O
(

n3

β2

(

log
n

ǫ
+ log logmax

‖bi‖
(det L)1/n

))

calls to HKZβ ,

BKZβ returns a basis C of L such that:

HF(C ) ≤ (1 + ǫ)γβ
n−1

2(β−1)
+ 3

2 .
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Sandpile model

We consider only xi = log ‖b∗
i
‖ for i ≤ n.

We assume that HKZ-reductions correspond to a fixed
pattern.

The information on the initial xi ’s fully determines the xi ’s
after a call to HKZ.
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x1 x2 x3 x4 x5 x6 x7 x8 x9
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x5 x6 x7 x8 x9x1 x2 x3 x4
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Matrix interpretation

x1 x2 x3 x4 x5 x6 x7 x8 x9

X = (x1, . . . , xn)
T

X0.5 ← A1X

X1 ← A1X + Γ1
X2 ← A2X1 + Γ2
. . .
Xk = AkXk + Γk
with k = n − β + 1

A full tour:
X ′ ← AX + Γ
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Quality of the output

Method: study the fixed point of:

X = AX + Γ

The β last xi ’s have the shape of an HKZ-reduced basis.

Asymptotically, line of slope − log γβ
β−1 .

i

xi

O((log β)2)

Corresponds to a Hermite factor close to γ
n−1

2(β−1)

β .
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Fast convergence

Dynamical system:

X ← AX + Γ

Method: study of the eigenvalues of ATA.

Result: the largest eigenvalue of ATA smaller than 1 is

≤ 1− 1

2

β2

n2
.

‖X − X∞‖ decreases by a constant factor every n2

β2 tours.
→ leads to the claimed complexity bound.
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From the model to the real algorithm

The results from the previous section cannot be used directly.

By averaging the xi ’s, a rigorous adaptation becomes possible.

Working on the averages suffices to get the result.
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Conclusion

First analysis of BKZ.

New methodology for analysing blockwise algorithms.

Better strategies for reducing?

The worst-case analysis does not fully explains the practical
behaviour.

Predictive model?
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	Conclusion and perspectives

