Analyzing Blockwise Lattice Algorithms using Dynamical Systems

Guillaume Hanrot, Xavier Pujol, Damien Stehlé

ENS Lyon, LIP (CNRS - ENSL - INRIA - UCBL - ULyon)

Analyzing Blockwise Lattice Algorithms using Dynamical Systems

- Lattices provide exponentially hard problems suitable for public key cryptography.
- Best known attacks on lattice-based cryptosystems rely on blockwise lattice reduction algorithms.
- Understanding these algorithms helps assessing the security of LBC.
- The most widely used reduction algorithm is BKZ.
- No reasonable time bound was known about BKZ.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Lattices provide exponentially hard problems suitable for public key cryptography.
- Best known attacks on lattice-based cryptosystems rely on blockwise lattice reduction algorithms.
- Understanding these algorithms helps assessing the security of LBC.
- The most widely used reduction algorithm is BKZ.
- No reasonable time bound was known about BKZ.

イロト 不得 トイヨト イヨト

- Lattices provide exponentially hard problems suitable for public key cryptography.
- Best known attacks on lattice-based cryptosystems rely on blockwise lattice reduction algorithms.
- Understanding these algorithms helps assessing the security of LBC.
- The most widely used reduction algorithm is BKZ.
- No reasonable time bound was known about BKZ.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Lattices provide exponentially hard problems suitable for public key cryptography.
- Best known attacks on lattice-based cryptosystems rely on blockwise lattice reduction algorithms.
- Understanding these algorithms helps assessing the security of LBC.
- The most widely used reduction algorithm is BKZ.
- No reasonable time bound was known about BKZ.

- Lattices provide exponentially hard problems suitable for public key cryptography.
- Best known attacks on lattice-based cryptosystems rely on blockwise lattice reduction algorithms.
- Understanding these algorithms helps assessing the security of LBC.
- The most widely used reduction algorithm is BKZ.
- No reasonable time bound was known about BKZ.

Contributions

- We give the first worst-case analysis of BKZ.
- We introduce a new BKZ model.
- It gives new tools for understanding lattice algorithms.

(日) (圖) (E) (E) (E)

Contributions

- We give the first worst-case analysis of BKZ.
- We introduce a new BKZ model.
- It gives new tools for understanding lattice algorithms.

(日) (圖) (E) (E) (E)

Contributions

- We give the first worst-case analysis of BKZ.
- We introduce a new BKZ model.
- It gives new tools for understanding lattice algorithms.

(日) (圖) (E) (E) (E)

◆□▶ ◆圖▶ ◆필▶ ◆필▶ ─ 필

Goal of lattice reduction: find a basis with small HF.

If b₁ is a shortest vector ≠ 0, then HF(b₁,..., b_n) ≤ √γ_n, with γ_n = Hermite constant ≤ n.

Analyzing Blockwise Lattice Algorithms using Dynamical Systems

イロト 不得 トイヨト イヨト

Goal of lattice reduction: find a basis with small HF.

If b₁ is a shortest vector ≠ 0, then HF(b₁,..., b_n) ≤ √γ_n, with γ_n = Hermite constant ≤ n.

Analyzing Blockwise Lattice Algorithms using Dynamical Systems

- Goal of lattice reduction: find a basis with small HF.
- If b_1 is a shortest vector $\neq 0$, then $\operatorname{HF}(b_1, \ldots, b_n) \leq \sqrt{\gamma_n}$, with $\gamma_n =$ Hermite constant $\leq n$.

 $x_i = \log \|b_i^*\|$ for $i \le n$ $(b_1^*, \ldots, b_n^* = \text{Gram-Schmidt basis of } B)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Analyzing Blockwise Lattice Algorithms using Dynamical Systems

Analyzing Blockwise Lattice Algorithms using Dynamical Systems

イロト イポト イヨト イヨト 三日

 $x_i = \log \|b_i^*\|$ for $i \le n$ $(b_1^*, \dots, b_n^* = \text{Gram-Schmidt basis of } B)$.

Analyzing Blockwise Lattice Algorithms using Dynamical Systems

BKZ

• Schnorr (1987): first hierarchies between LLL and HKZ.

- Schnorr and Euchner (1994): algorithm for BKZ-reduction.
- Gama and Nguyen (2008): BKZ behaves badly when the block size is ≥ 25.
- Other reductions in time $2^{O(\beta)} \times Poly(n)$:
 - Schnorr (1987) : Semi-block- 2β -reduction.
 - Gama et al. (2006): Block-Rankin-reduction.
 - Gama and Nguyen (2008): Slide-reduction.

...but BKZ remains the most efficient in practice.

BKZ

- Schnorr (1987): first hierarchies between LLL and HKZ.
- Schnorr and Euchner (1994): algorithm for BKZ-reduction.
- Gama and Nguyen (2008): BKZ behaves badly when the block size is ≥ 25.
- Other reductions in time $2^{O(\beta)} \times Poly(n)$:
 - Schnorr (1987) : Semi-block- 2β -reduction.
 - Gama et al. (2006): Block-Rankin-reduction.
 - Gama and Nguyen (2008): Slide-reduction.

...but BKZ remains the most efficient in practice.

BKZ

- Schnorr (1987): first hierarchies between LLL and HKZ.
- Schnorr and Euchner (1994): algorithm for BKZ-reduction.
- Gama and Nguyen (2008): BKZ behaves badly when the block size is \geq 25.

Other reductions in time $2^{O(\beta)} \times Poly(n)$:

- Schnorr (1987) : Semi-block- 2β -reduction.
- Gama et al. (2006): Block-Rankin-reduction.
- Gama and Nguyen (2008): Slide-reduction.

...but BKZ remains the most efficient in practice.

BKZ

- Schnorr (1987): first hierarchies between LLL and HKZ.
- Schnorr and Euchner (1994): algorithm for BKZ-reduction.
- Gama and Nguyen (2008): BKZ behaves badly when the block size is \geq 25.

Other reductions in time $2^{O(\beta)} \times Poly(n)$:

- Schnorr (1987) : Semi-block- 2β -reduction.
- Gama et al. (2006): Block-Rankin-reduction.
- Gama and Nguyen (2008): Slide-reduction.

..but BKZ remains the most efficient in practice.

BKZ

- Schnorr (1987): first hierarchies between LLL and HKZ.
- Schnorr and Euchner (1994): algorithm for BKZ-reduction.
- Gama and Nguyen (2008): BKZ behaves badly when the block size is \geq 25.

Other reductions in time $2^{O(\beta)} \times Poly(n)$:

- Schnorr (1987) : Semi-block- 2β -reduction.
- Gama et al. (2006): Block-Rankin-reduction.
- Gama and Nguyen (2008): Slide-reduction.

...but BKZ remains the most efficient in practice.

Algorithm (BKZ $_\beta$, modified version)

Input: B of dimension n. Repeat ... times For i from 1 to $n - \beta + 1$ do Size-reduce B. HKZ-reduce a projection of the block $(b_i, \ldots, b_{i+\beta-1})$. Report the transformation on B.

Termination?

Algorithm (BKZ $_{\beta}$, modified version)Input: B of dimension n.Repeat ... timesFor i from 1 to $n - \beta + 1$ doSize-reduce B.HKZ-reduce a projection of the block $(b_i, \ldots, b_{i+\beta-1})$.Report the transformation on B.

Termination?

Algorithm (BKZ $_{\beta}$, modified version)Input: B of dimension n.Repeat ... timesFor i from 1 to $n - \beta + 1$ doSize-reduce B.HKZ-reduce a projection of the block $(b_i, \dots, b_{i+\beta-1})$.Report the transformation on B.

Termination?

Progress made during the execution of BKZ

Experience on 64 LLL-reduced knapsack-like matrices ($n = 108, \beta = 24$).

э

Progress made during the execution of BKZ

Experience on 64 LLL-reduced knapsack-like matrices ($n = 108, \beta = 24$).

э

Our result

 $\gamma_{\beta} = \text{Hermite constant} \leq \beta.$ L a lattice with basis (b_1, \dots, b_n) .

Theorem
After
$$\mathcal{O}\left(\frac{n^3}{\beta^2}\left(\log\frac{n}{\epsilon} + \log\log\max\frac{\|b_i\|}{(\det L)^{1/n}}\right)\right)$$
 calls to HKZ_{β} ,
 BKZ_{β} returns a basis C of L such that:
 $HF(C) \leq (1 + \epsilon)\gamma_{\beta} \frac{n-1}{2(\beta-1)} + \frac{3}{2}$.

Analyzing Blockwise Lattice Algorithms using Dynamical Systems

Sandpile model

• We consider only $x_i = \log ||b_i^*||$ for $i \le n$.

- We assume that HKZ-reductions correspond to a fixed pattern.
- The information on the initial x_i's fully determines the x_i's after a call to HKZ.

Sandpile model

- We consider only $x_i = \log ||b_i^*||$ for $i \le n$.
- We assume that HKZ-reductions correspond to a fixed pattern.
- The information on the initial x_i's fully determines the x_i's after a call to HKZ.

◆□ → ◆聞 → ◆臣 → ◆臣 → □ □

Sandpile model

- We consider only $x_i = \log ||b_i^*||$ for $i \le n$.
- We assume that HKZ-reductions correspond to a fixed pattern.
- The information on the initial x_i's fully determines the x_i's after a call to HKZ.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Analyzing Blockwise Lattice Algorithms using Dynamical Systems

$$X = (x_1, \dots, x_n)^T$$

$$X_{0.5} \leftarrow A_1 X$$

$$X_1 \leftarrow A_1 X + \Gamma_1$$

$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$

$$\dots$$

$$X_k = A_k X_k + \Gamma_k$$

with $k = n - \beta + 1$

A full tour: $X' \leftarrow AX + \Gamma$

イロト イヨト イヨト イヨト

Э

$$X = (x_1, \dots, x_n)^T$$
$$X_{0.5} \leftarrow A_1 X$$
$$X_1 \leftarrow A_1 X + \Gamma_1$$
$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$
$$X_k = A_k X_k + \Gamma_k$$
with $k = n - \beta + 1$

A full tour: $X' \leftarrow AX + \Gamma$

イロト イヨト イヨト イヨト

Э

$$X = (x_1, \dots, x_n)^T$$

$$X_{0.5} \leftarrow A_1 X$$

$$X_1 \leftarrow A_1 X + \Gamma_1$$

$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$

$$\dots$$

$$X_k = A_k X_k + \Gamma_k$$

with $k = n - \beta + 1$

A full tour: $X' \leftarrow AX + \Gamma$

イロト イヨト イヨト イヨト

E

$$X = (x_1, \dots, x_n)^T$$

$$X_{0.5} \leftarrow A_1 X$$

$$X_1 \leftarrow A_1 X + \Gamma_1$$

$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$

 $X_k = A_k X_k + \Gamma_k$ with $k = n - \beta + 1$

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

A full tour: $X' \leftarrow AX + \Gamma$

$$X = (x_1, \dots, x_n)^T$$
$$X_{0.5} \leftarrow A_1 X$$
$$X_1 \leftarrow A_1 X + \Gamma_1$$
$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$
$$\dots$$
$$X_k = A_k X_k + \Gamma_k$$
with $k = n - \beta + 1$

A full tour: $X' \leftarrow AX + \Gamma$

イロト イヨト イヨト イヨト

E

$$X = (x_1, \dots, x_n)^T$$
$$X_{0.5} \leftarrow A_1 X$$
$$X_1 \leftarrow A_1 X + \Gamma_1$$
$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$
$$\dots$$
$$X_k = A_k X_k + \Gamma_k$$
with $k = n - \beta + 1$
A full tour:

A full tour: $X' \leftarrow AX + \Gamma$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

E

Quality of the output

Method: study the fixed point of:

$$X = AX + \Gamma$$

- The β last x_i 's have the shape of an HKZ-reduced basis.
- Asymptotically, line of slope $-\frac{\log \gamma_{\beta}}{\beta-1}$.

Quality of the output

Method: study the fixed point of:

$$X = AX + \Gamma$$

- The β last x_i 's have the shape of an HKZ-reduced basis.
- Asymptotically, line of slope $-\frac{\log \gamma_{\beta}}{\beta-1}$.

Quality of the output

Method: study the fixed point of:

$$X = AX + \Gamma$$

- The β last x_i 's have the shape of an HKZ-reduced basis.
- Asymptotically, line of slope $-\frac{\log \gamma_{\beta}}{\beta-1}$.

Fast convergence

Dynamical system:

$$X \leftarrow AX + \Gamma$$

Method: study of the eigenvalues of $A^T A$.

Result: the largest eigenvalue of $A^T A$ smaller than 1 is

$$\leq 1-\frac{1}{2}\frac{\beta^2}{n^2}.$$

 $\|X - X^{\infty}\|$ decreases by a constant factor every $rac{n^2}{\beta^2}$ tours. ightarrow leads to the claimed complexity bound.

Fast convergence

Dynamical system:

$$X \leftarrow AX + \Gamma$$

Method: study of the eigenvalues of $A^T A$.

Result: the largest eigenvalue of $A^T A$ smaller than 1 is

$$\leq 1-\frac{1}{2}\frac{\beta^2}{n^2}.$$

 $||X - X^{\infty}||$ decreases by a constant factor every $\frac{n^2}{\beta^2}$ tours. \rightarrow leads to the claimed complexity bound.

Analyzing Blockwise Lattice Algorithms using Dynamical Systems

Fast convergence

Dynamical system:

$$X \leftarrow AX + \Gamma$$

Method: study of the eigenvalues of $A^T A$.

Result: the largest eigenvalue of $A^T A$ smaller than 1 is

$$\leq 1 - \frac{1}{2} \frac{\beta^2}{n^2}.$$

 $||X - X^{\infty}||$ decreases by a constant factor every $\frac{n^2}{\beta^2}$ tours. \rightarrow leads to the claimed complexity bound.

Analyzing Blockwise Lattice Algorithms using Dynamical Systems

From the model to the real algorithm

- The results from the previous section cannot be used directly.
- By averaging the x_i's, a rigorous adaptation becomes possible.
- Working on the averages suffices to get the result.

From the model to the real algorithm

- The results from the previous section cannot be used directly.
- By averaging the x_i 's, a rigorous adaptation becomes possible. • Working on the averages suffices to get the result

From the model to the real algorithm

- The results from the previous section cannot be used directly.
- By averaging the x_i 's, a rigorous adaptation becomes possible.
- Working on the averages suffices to get the result.

• First analysis of BKZ.

• New methodology for analysing blockwise algorithms.

- Better strategies for reducing?
- The worst-case analysis does not fully explains the practical behaviour.
- Predictive model?

3

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

- First analysis of BKZ.
- New methodology for analysing blockwise algorithms.
- Better strategies for reducing?
- The worst-case analysis does not fully explains the practical behaviour.
- Predictive model?

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- First analysis of BKZ.
- New methodology for analysing blockwise algorithms.
- Better strategies for reducing?
- The worst-case analysis does not fully explains the practical behaviour.
- Predictive model?

- First analysis of BKZ.
- New methodology for analysing blockwise algorithms.
- Better strategies for reducing?
- The worst-case analysis does not fully explains the practical behaviour.
- Predictive model?

- First analysis of BKZ.
- New methodology for analysing blockwise algorithms.
- Better strategies for reducing?
- The worst-case analysis does not fully explains the practical behaviour.
- Predictive model?