
Cryptography with Tamperable

and Leaky Memory

Yael Tauman Kalai

MSR

Bhavana Kanukurthi

UCLA

Amit Sahai

UCLA

2

Leakage Resilient Cryptography
[Rivest1997, Boyko1999, Canetti-Dodis-Halevi-Kushilevitz-Sahai2000, Ishai-Sahai-Wagner2003, Micali-

Reyzin2004, Ishai-Prabhakaran-Sahai-Wagner2006, Dziembowski-Pietrzak2008, Pietrzak2009 , Akavia-

Goldwasser-Vaikuntanathan2009, Dodis-Kalai-Lovett2009, Naor-Segev2009, Katz-Vaikuntanathan2009,

Alwen-Dodis-Wichs2009, Alwen-Dodis-Naor-Segev-Walfish-Wichs2009, Faust-Kiltz-Pietrzak-Rothblum2009,

Faust-Rabin-Reyzin-Tromer-Vaikuntanathan2010, Dodis-Goldwasser-Kalai-Peikert-Vaikuntanathan2010,

Goldwasser-Kalai-Peikert-Vaikuntanathan2010, Juma-Vahlis2010, Goldwasswer-Rothblum2010, Canetti-

Kalai-Mayank-Wichs2010, Dodis-Haralambiev-LopezAlt-Wichs2010, Brakerski-Kalai-Katz-

Vaikuntanathan2010, Boyle-Segev-Wichs2010, Dodis-Pietrzak2010, Braverman-Hassidim-K2010, Lewko-

Waters2010, Lewko-Rouselakis-Waters2011, Lewko-Lewko-Waters2011]

We know how to build cryptographic scheme that are secure against continual

leakage!

[Dodis-Haralambiev-LopezAlt-Wichs2010, Brakerski-Kalai-Katz-Vaikuntanathan2010]

BUT physicals attacks aren’t restricted to leakage attacks;

they also tamper with the memory!

[Considered for e.g., in Biham and Shamir Crypto ’97; Boneh-DeMillo-Lipton Eurocrypt ‘97, Kocher-

Jaffe-Jun Crypto ’99, Govindavajhala and Appel IEEE Symposium on S&P ’03]

3

Prior Work: Tamper Resilient Cryptography

 [Gennaro, Lysysanskaya, Malkin, Micali, Rabin TCC ’04]:

 Achieve strong tamper–proof security but

 rely on some non–tamperable (user–specific) memory.

 [Ishai, Prabhakaran, Sahai, Wagner Eurocrypt ’06]:

 Considered tampering applied to all parts of computation.

 But consider only tampering functions that set/reset bits.

 [Bellare, Kohno Eurocrypt ’03], [Dziembowski, Pietrzak, Wichs,

 ICS ‘10], [Applebaum, Harnik, Ishai ICS ‘11]

 Limited tampering to memory.

4

Our Goals

Build leakage and tamper resilient that always satisfy the following

conditions:

 All user–modifiable memory is tamperable and leaky;

 (in particular, the public key stored on device is also tamperable).

 Note that public/private keys must be part of user-modifiable memory, since

they are unique to each user.

 Allow for arbitrary tampering and leakage.

 Assume non–tamperable public parameters (CRS).

 Rely on a source of true local randomness. (Necessary for our setting:

 Lysysanskaya, Liu SCN ‘10)

We achieve this! But ….

5

Our Results (Informally)

Result 1: We present a general transformation that converts any scheme

resilient to bounded leakage into one that is also resilient to continual tampering.

(Instantiable using FHE + NIZKs.)

Result 2: We construct encryption and signature schemes resilient to continual

leakage and tampering, based on linear assumptions over bilinear groups.

6

Signature Scheme in the Continual Tampering Model

SK

PK

 T1

T1(SK)
σ

sign m

Forgery Success: if forgery verifies wrt

original PK

T2(T1(SK))

 T2

Easy to see: This is impossible to achieve!

Problem: Adversary can tamper with sk bit-by-bit and use her signature queries to

learn the entire secret key!

FIX: Need to assume that the circuit self–destructs!

CIRCUIT SELF–
DESTRUCTS!!**

**under certain
conditions

7

Building Block: NIZK Proofs of Knowledge

Prover Verifier

Common Reference String (CRS)

witness (w)

Goal: Prove statement X in L

π = P(CRS, x, w)

We require our NIZK proof system to have some additional properties:

 Simulation soundness: Hard to prove false statements even after seeing

 simulated proofs of false statements.

 Proof of Knowledge: If adversary outputs a valid proof, then the simulator can

 extract a witness out of it.

 SHORT proof: Length of π should depend polynomially on |w|.

8

Our General Transformation

S = (Gen, Sig, Ver) is a leakage resilient signature scheme

 with sk ← {0,1}n and pk efficiently generated from sk

“short” simulation sound

proof of knowledge

 Gen’:

• Sets sk: PRG(r)

• sk′:= (sk, π) (where π: NIZK proof of pseudo–randomness)

 Sig’sk’(m) :

 First verifies sk′:= (sk, π) is valid (self–destructs otherwise).

 Returns Sigsk (m)

S’ = (Gen’, Sig’, Ver’) is the tamper resilient scheme we build from S.

9

Informal Theorem: If S is resilient to |r| + |π| bits of

leakage, then S’ is resilient to continual tampering;

(where r: PRG seed;

 π: NIZK proof of pseudo–randomness).

10

Intuition behind Security

Tampering
Adversary A

Leakage
Adversary B

Leakage
Challenger C

(sk, pk)
where sk←{0,1}n

pk

(crs, with trapdoor μ)

pk, crs

Sign m

Sign m

σ σ

 L(sk, pk):

 Computes π := SimProof that “sk is pseudo-random”.

 Sets (sk*, π*, pk*) := T (sk, π, pk).

 If proof is valid, then sk* = PRG (r*),

 so can extract r*

T amper T (to be applied

on ((sk, π), pk))
Leakage L (to be

applied on (sk, pk))

r*, π*,

With (r*, π*), B has

the current secret state (i.e., sk*, π*)

entirely; so she can simulate rest of
A’s queries on her own.

Extracts r* from (sk*, π*, pk*)

Sig and Sig’ are

equivalent until the

secret key has been

tampered with!

11

Success: if forgery

verifies wrt PK

L2(SK1)

SK2

 L1 L2

Signature Scheme in Continual Tampering and Memory

Leakage Model

SK1

PK

L1(SK1)

 T1

T1(SK1) σ
sign m

UPDATE

Bounded

amount of

leakage

 More leakage,

tampering &

signature queries

(in any order)

Forgery

SK2 = Update(T1 (SK1))
NOTE: amount of leakage that

the adversary gets in the entire

lifetime of the secret key is not

bounded
Main Challenge:

How do you do secure updates

with tampered secret keys?

Starting Point for our work:

Continual Memory Leakage

Scheme of BKKV

12

Our Continual Tamper and Leakage Resilient Scheme

(NOTE: PP is non-tamperable; but not user specific)

See paper for

details!

13

Conclusion

 This talk: Presented a generic transformation that converts bounded

 leakage resilience to (leakage) and tamper resilience.

 Presented the first number-theoretic construction of

 cryptographic schemes simultaneously resilient to continual leakage

 and tampering.

14

 Thank you!!!

