A COMPREHENSIVE EVALUATION OF MUTUAL INFORMATION ANALYSIS USING A FAIR EVALUATION FRAMEWORK

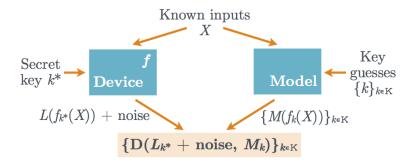
Carolyn Whitnall, Elisabeth Oswald

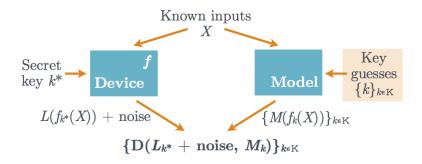
carolyn.whitnall@bris.ac.uk Department of Computer Science, University of Bristol

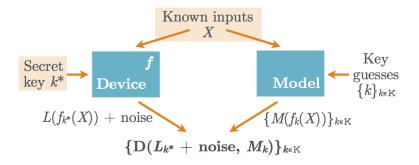
16th August 2011

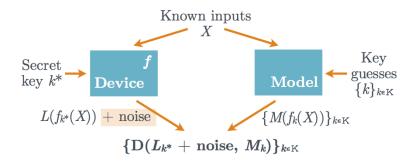
Algorithm + Device = Measurements!

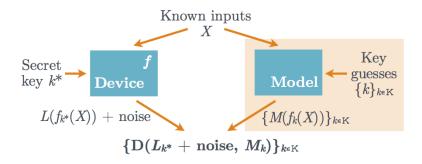
But how to make the most of those measurements?

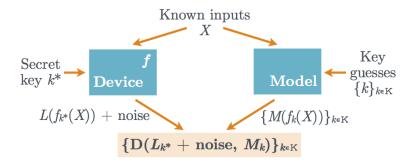


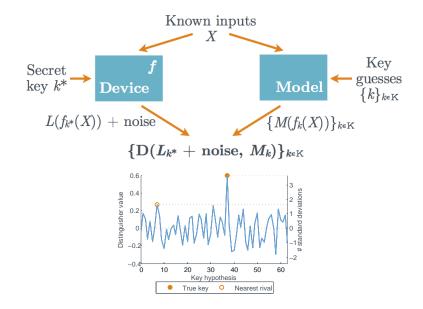


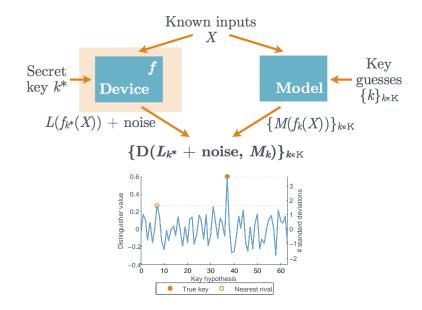


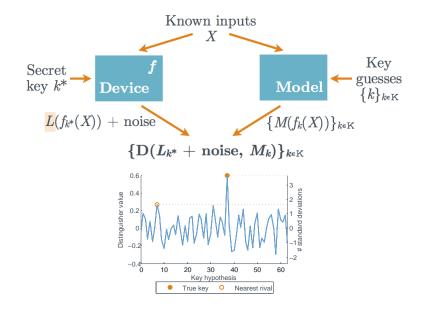


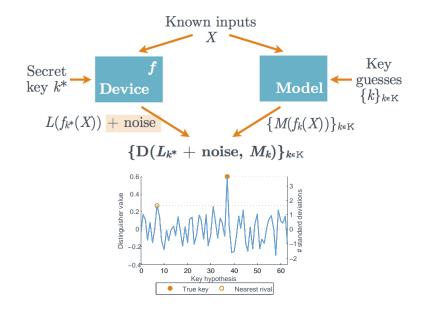












WHAT MAKES A GOOD DISTINGUISHER?

THE USUAL APPROACH...

Desirable metric: "# of trace measurements required for key recovery"

- Not like-for-like: Practical outcomes highly sensitive to estimator choice
- Not computable: Sampling distributions (usually) unknown

OUR CONTRIBUTION

'True' distinguishing vectors can be directly computed for well-defined hypothetical scenarios

Theoretic advantages $\neq \Rightarrow$ practical advantages (unequal estimation costs) BUT

Certain characteristics have a strong bearing on likely practical outcomes

What features of the *theoretic* distinguishing vectors most contribute to its estimatability?

C. WHITNALL (UNIVERSITY OF BRISTOL)

WHAT MAKES A GOOD DISTINGUISHER?

THE USUAL APPROACH...

Desirable metric: "# of trace measurements required for key recovery"

- Not like-for-like: Practical outcomes highly sensitive to estimator choice
- Not computable: Sampling distributions (usually) unknown

OUR CONTRIBUTION

'True' distinguishing vectors can be directly computed for well-defined hypothetical scenarios

Theoretic advantages $\not\Longrightarrow$ practical advantages (unequal estimation costs) BUT

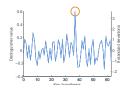
Certain characteristics have a strong bearing on likely practical outcomes

What features of the *theoretic* distinguishing vectors most contribute to its estimatability?

C. WHITNALL (UNIVERSITY OF BRISTOL)

EVALUATING MIA

'A FAIR EVALUATION FRAMEWORK'



Correct key ranking in the theoretic vector

 Distinguisher must isolate key in theory to stand a chance in practice

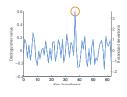
Nearest-rival distinguishing score – # s.d. between correct key value and highest ranked alternative

► The smaller the margin, the fewer the traces needed for estimation!

Average minimum support – how large an input support does the distinguisher need?

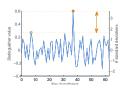
An attack which needs to 'see more inputs' will inevitably need more traces

'A FAIR EVALUATION FRAMEWORK'



Correct key ranking in the theoretic vector

 Distinguisher must isolate key in theory to stand a chance in practice

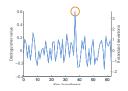


- *Nearest-rival distinguishing score* # s.d. between correct key value and highest ranked alternative
 - ► The smaller the margin, the fewer the traces needed for estimation!

Average minimum support – how large an input support does the distinguisher need?

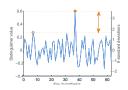
An attack which needs to 'see more inputs' will inevitably need more traces

'A FAIR EVALUATION FRAMEWORK'

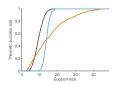


Correct key ranking in the theoretic vector

 Distinguisher must isolate key in theory to stand a chance in practice



- *Nearest-rival distinguishing score* # s.d. between correct key value and highest ranked alternative
 - ► The smaller the margin, the fewer the traces needed for estimation!



- *Average minimum support* how large an input support does the distinguisher need?
 - An attack which needs to 'see more inputs' will inevitably need more traces

MIA: MUTUAL INFORMATION

- Defined as: $D(k) = I(L_{k^*} + \varepsilon; M_k) = H(L_{k^*} + \varepsilon) H(L_{k^*} + \varepsilon | M_k)$, where H is the differential entropy: $H(X) = -\int_{x \in \mathcal{X}} p_X(x) \log_2(p_X(x))$
- **Functional of the distribution**—estimation problematic
 - DPA outcomes extremely sensitive to estimator choice; no 'ideal' exists
 - No general results for the sampling distributions

CPA: PEARSON'S CORRELATION COEFFICIENT

Defined as:
$$D(k) = \rho(L_{k^*} + \varepsilon, M_k) = \frac{\operatorname{Cov}(L_{k^*} + \varepsilon, M_k)}{\sqrt{\operatorname{Var}(L_{k^*} + \varepsilon)}\sqrt{\operatorname{Var}(M_k)}}$$

- *Function of distributional moments*—estimation simple
 - Sample correlation coefficient suits a broad range of assumptions
 - Lots of 'nice' results for its sampling distribution

MIA: MUTUAL INFORMATION

- Defined as: $D(k) = I(L_{k^*} + \varepsilon; M_k) = H(L_{k^*} + \varepsilon) H(L_{k^*} + \varepsilon | M_k)$, where H is the differential entropy: $H(X) = -\int_{x \in \mathcal{X}} p_X(x) \log_2(p_X(x))$
- **Functional of the distribution**—estimation problematic
 - DPA outcomes extremely sensitive to estimator choice; no 'ideal' exists
 - No general results for the sampling distributions

CPA: PEARSON'S CORRELATION COEFFICIENT

Defined as:
$$D(k) = \rho(L_{k^*} + \varepsilon, M_k) = \frac{\operatorname{Cov}(L_{k^*} + \varepsilon, M_k)}{\sqrt{\operatorname{Var}(L_{k^*} + \varepsilon)}\sqrt{\operatorname{Var}(M_k)}}$$

- *Function of distributional moments*—estimation simple
 - Sample correlation coefficient suits a broad range of assumptions
 - Lots of 'nice' results for its sampling distribution

WHY 'MUTUAL INFORMATION ANALYSIS'?

Proposed (Gierlichs et al., 2008) as an enhancement to correlation DPA:

- *Optimal* in an information theoretic sense quantifies total dependence
- *Generic* should work even without a good power model
- *However*... correlation DPA frequently performs better in empirical comparisons

Correlation DPA Mutual Information Analysis	

WHY 'MUTUAL INFORMATION ANALYSIS'?

Proposed (Gierlichs et al., 2008) as an enhancement to correlation DPA:

- *Optimal* in an information theoretic sense quantifies total dependence
- *Generic* should work even without a good power model
- *However*... correlation DPA frequently performs better in empirical comparisons

What can we	learn from	a theoretic of	evaluation?
-------------	------------	----------------	-------------

Correlation DPA Mutual Information Analysis	

WHY 'MUTUAL INFORMATION ANALYSIS'?

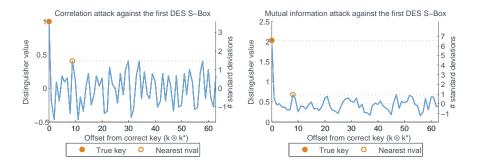
Proposed (Gierlichs et al., 2008) as an enhancement to correlation DPA:

- *Optimal* in an information theoretic sense quantifies total dependence
- *Generic* should work even without a good power model
- *However*... correlation DPA frequently performs better in empirical comparisons

What can we lea	Irn from a theor	retic evaluation?
-----------------	------------------	-------------------

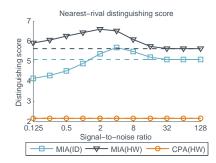
Distinguisher	Power model	Abbreviation
Correlation DPA Mutual Information Analysis	Hamming weight Hamming weight Identity	CPA(HW) MIA(HW) MIA(ID)

NOISE-FREE HAMMING WEIGHT LEAKAGE



	CPA(HW)	MIA(HW)	MIA(ID)
Correct key ranking	1	1	1
Nearest-rival distinguishing score	2.14	5.61	5.08
Average minimum support	6	8	16

MIA STRANGELY SENSITIVE TO NOISE



Impact of noise on nearest rival distinguishing score:

Constant for correlation-based distinguisher

Evidence of *stochastic resonance* for MI-based distinguishers

(Note: no change in required support sizes throughout tested range)

Candidate scenario: Hamming distance leakage from reference state $4_{(10)} = 0100_{(2)}$

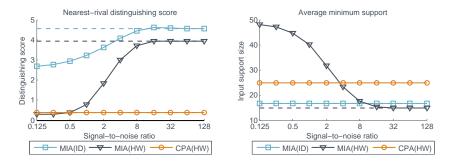
	CPA(HW)	MIA(HW)	MIA(ID)
Correct key ranking	1	1	1
Nearest rival distinguishing score	0.86	3.93	4.57
Average minimum support	34	15	17

Question 1: Do these advantages persist in the presence of noise?

• Question 2: If so, can they be translated to practical advantages with standard estimation procedures?

... STILL LOOKING PROMISING...

Question 1: Do the theoretic advantages in the 'pure signal' setting persist in the presence of noise?



×MIA(HW)

MIA(ID)

Distinguishing score falls below that of CPA(HW)Hefty penalty in terms of required support size

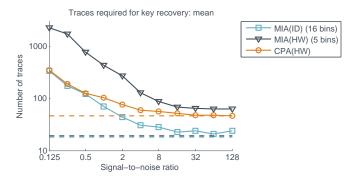
Maintains substantially larger distinguishing scoresRequired support size remains constant

C. WHITNALL (UNIVERSITY OF BRISTOL)

EVALUATING MIA

... EXPERIMENTAL RESULTS CONFIRM IT!

Question 2: Can the theoretic advantages be translated to practical advantages with standard estimation procedures?



 \checkmark MIA(HW)Least efficient in all but the pure-signal scenario \checkmark MIA(ID)Comparable to CPA(HW) when SNR ≤ 0.5 , but
more efficient thereafter

C. WHITNALL (UNIVERSITY OF BRISTOL)

EVALUATING MIA

BAD NEWS FOR DUAL-RAIL PRECHARGE LOGIC?

- Unless output capacitances are *perfectly balanced* then some data-dependent signal will still leak
- Power consumption when *not* perfectly balanced can be likened to the HD from a constant reference state:
 - Reference state \leftrightarrow Bit-wise difference in the wire capacitances
- *Confirmed* by experimental attacks in Gierlichs *et al.*, 2008

MIA can be used to thwart countermeasures which resist correlation DPA!

The problem: Empirical studies don't enable concrete, like-for-like comparisons between distinguishersOur solution: A *theoretic* evaluation which bypasses the practical problems of estimation

Implications for MI-based distinguishers:

- There are scenarios where MI has a substantial theoretic advantage (e.g. Hamming distance leakage, DRP logic)
- Such advantages *can* be translated into practical advantages
- The (standardised) MI distinguishing vector exhibits a type of *stochastic resonance* as noise levels vary

Whitnall, C and Oswald, E: A Fair Evaluation Framework for Comparing Side-Channel Distinguishers. Journal of Cryptographic Engineering, 2011.

The problem: Empirical studies don't enable concrete, like-for-like comparisons between distinguishers

Our solution: A *theoretic* evaluation which bypasses the practical problems of estimation

Implications for MI-based distinguishers:

- There *are* scenarios where MI has a substantial *theoretic advantage* (e.g. Hamming distance leakage, DRP logic)
- Such advantages *can* be translated into practical advantages
- The (standardised) MI distinguishing vector exhibits a type of stochastic resonance as noise levels vary

Whitnall, C and Oswald, E: *A Fair Evaluation Framework for Comparing Side-Channel Distinguishers*. Journal of Cryptographic Engineering, 2011.

Any questions?