
Bar-Ilan University, Israel Gilad Asharov 

Bar-Ilan University, Israel Yehuda Lindell 

IBM Research, New York Tal Rabin 



 A set of parties with private inputs wish to 
compute some joint function of their inputs 

 Parties wish to preserve some security 
properties. E.g., privacy and correctness 
◦ Example: secure election protocol 

 Security must be preserved in the face of 
adversarial behavior by some of the 
participants, or by an external party 



 Michael Ben-Or, Shafi Goldwasser and Avi Wigderson 

 

 A protocol for general multiparty computation 
◦ Perfectly secure 

◦ Adaptively secure 

◦ Concurrently secure 

 

 Elegant and beautiful construction 

 A huge impact on our field 



 A full specification of the BGW multiplication 
protocol 
◦ The protocol requires a new step for the case of 

n/4 ≤ t < n/3 

◦ A full proof of security 

 A new multiplication protocol 
◦ More efficient 

◦ Simpler 

◦ Constant round per multiplication (as BGW) 



 Perfect multiplication based on homomorphic secret 
sharing 
◦ [Cramer, Damgard, Maurer 00] 

 

 Efficiency of perfect multiplication 
◦ Player elimination technique [Hirt, Maurer, Przydatek 00] 

[Hirt, Maurer 01], [Beerliova-Trubıniova, Hirt 06] [Hirt, Nielsen 
06] [Damgard, Nielsen 07] [Trubıniova, Hirt 08] 

◦ Very efficient protocols 

◦ The round complexity per multiplication depends on the 
number of parties 
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 The invariant: 
◦ Each party holds shares of a and b 

 

 Addition Gate: 
◦ Each party locally adds its shares 

 The result is a share of a random polynomial of degree-t 
that hides a+b 
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a + b 

+ 



 The invariant: 
◦ Each party holds shares of a and b 

 

 Addition Gate: 
◦ Each party locally adds its shares 

 The result is a share of a random polynomial of degree-t 
that hides a+b 

 

 Multiplication Gate: 
◦ Each party locally multiplies its shares 

 Result is a share of a poly of degree-2t that hides a⋅b 

 Run an interactive protocol to reduce the degree 

 

a b 

a⋅b 
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a1b1 a2b2 a3b3 an-2bn-2 an-1bn-1 anbn 

P1 P2 P3 Pn-2 Pn-1 Pn 

g1(1) g1(2) g1(3) g1(n-2) g1(n-1) g1(n) 

g2(1) g2(2) g2(3) g2(n-2) g2(n-1) g2(n) 

gn(1) gn(2) gn(3) gn(n-2) gn(n-1) gn(n) … 

… … … … … 

H(1) H(n) 

degree 2t, hides ab 

degree t, hides ab 

… 

H(2) H(n-1) 

Possible whenever at least 2t+1 shares were  
sub-shared correctly  



a1b1 a2b2 a3b3 an-2bn-2 an-1bn-1 anbn 

P1 P2 P3 Pn-2 Pn-1 Pn 

g1(1) g1(2) g1(3) g1(n-2) g1(n-1) g1(n) 

g2(1) g2(2) g2(3) g2(n-2) g2(n-1) g2(n) 

gn(1) gn(2) gn(3) gn(n-2) gn(n-1) gn(n) … 

… … … … … 

degree 2t, hides ab 

wrong! 

… 

H(1) H(n) H(2) H(n-1) 

The honest parties need to identify the 
incorrect shares 

*we assume: 
at least 2t+1 honest parties 
at most t corrupted parties 



f(1) f(2) f(3) … f(n-2) f(n-1) f(n) 

P1 P2 P3 Pn-2 Pn-1 Pn 

g1(1) g1(2) g1(3) g1(n-2) g1(n-1) g1(n) 

g2(1) g2(2) g2(3) g2(n-2) g2(n-1) g2(n) 

… 

… … 

gn(1) gn(2) gn(3) gn(n-2) gn(n-1) gn(n) … 

… … … … … … 

degree-t 

g3(1) g3(2) g3(3) g3(n-2) g3(n-1) g3(n) … 



ai 

Ai(1) 

Ai(2) 

Ai(3) 

Ai(n-2) 

Ai(n-1) 

Ai(n) 

bi 

Bi(1) 

Bi(2) 

Bi(3) 

Bi(n-2) 
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Bi(n) 
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a1 a2 a3 an-2 an-1 an 

A1(1) A1(2) A1(3) A1(n-2) A1(n-1) A1(n) … 

… … … … 

hides a 

A2(1) A2(2) A2(3) A2(n-2) A2(n-1) A2(n) … 

b1 b2 b3 bn-2 bn-1 bn 

… … … … 

hides b 
… B1(1) B1(2) B1(3) B1(n-2) B1(n-1) B1(n) 

B2(1) B2(2) B2(3) B2(n-2) B2(n-1) B2(n) … 

hides a1 

hides b1 

C1(1) C1(2) C1(3) C1(n-2) C1(n-1) C1(n) hides a1b1 

hides a2 

hides b2 

C2(1) C2(2) C2(3) C2(n-2) C2(n-1) C2(n) hides a2b2 



a1 a2 a3 an-2 an-1 an 

A1(1) A1(2) A1(3) A1(n-2) A1(n-1) A1(n) … 

… … … … 

hides a 

A2(1) A2(2) A2(3) A2(n-2) A2(n-1) A2(n) … 

b1 b2 b3 bn-2 bn-1 bn 

… … … … 

hides b 
… B1(1) B1(2) B1(3) B1(n-2) B1(n-1) B1(n) 

B2(1) B2(2) B2(3) B2(n-2) B2(n-1) B2(n) … 

hides a1 

hides b1 

C1(1) C1(2) C1(3) C1(n-2) C1(n-1) C1(n) hides a1b1 

hides a2 

hides b2 

C2(1) C2(2) C2(3) C2(n-2) C2(n-1) C2(n) hides a2b2 



 Inputs:  
◦ Each party Pj holds sub-shares Ai(j), Bi(j) 

◦ The dealer – Pi – knows Ai(x), Bi(x)  
 The dealer distributes t polynomials of degree-t (VSS), 

D1(x),…,Dt(x), such that: 
 Ci(x) = Ai(x)Bi(x) - 𝑥𝑙𝑡

𝑙=1 D𝑙(x)  
is of degree-t 
◦ each party computes its share on Ci(x) using its other shares 
◦ The free coefficient of Ci(x) is always Ai(0)Bi(0) = aibi 

◦ Choosing D1,…,Dt inappropriately can end up with a 
polynomial of degree higher than t 

The parties need to verify that Ci(x) 
is of degree-t 



 Parties have shares of Ci(x) and want to check that it is 
of degree-t 

 Pi distributes C'i(x) using VSS (guarantees degree-t) and 
claims that C'i(x) = Ci(x) 
◦ Ci(0) has the correct free coefficient, but unknown degree 
◦ C'i(x) is of degree-t, not necessarily the correct free coefficient 

 Each party Pj checks that C'i(j) = Ci(j) 
◦ If C'i(j) ≠ Ci(j) – it broadcasts a “complaint” 

 If number of complaints > t : "reject" 
◦ need more than t complaints, since the adversary may 

complain about an honest dealer 

 

 



 The dealer creates D1(x),…,Dt(x) not according to the 
protocol and so Ci(x) is of degree higher than t 

 It chooses C'i(x) of degree-t such that C'i(j) = Ci(j) for 
t+1 honest parties, but C'i(0) ≠ aibi 

 The corrupted parties do not complain 

 Result:  
◦ t+1 honest parties do not complain  

◦ t corrupted parties do not complain 

◦ t honest parties complain 

 The polynomial is accepted 



f(1) f(2) f(3) … f(n-2) f(n-1) f(n) 

P1 P2 P3 Pn-2 Pn-1 Pn 

degree-t 

f(k) f(k) f(k) f(k) f(k) f(k) 



 For each complaining party Pk – the parties check if its 
complaint is fake or legitimate: 
◦ Invoke feval on the shares of Ai(x) and receive Ai(k) 

◦ Invoke feval on the shares of Bi(x) and receive  Bi(k) 

◦ … 

◦ The values C’i(k), Ai(k), Bi(k), D1(k), …, Dt(k) become public 

◦ The parties compute Ci(k), and compare it to Ci’(k) 

 If Ci(k) = Ci’(k): the complaint is fake 

 If Ci(k) ≠ Ci’(k): the complaint is legitimate 

 If there is one legitimate complaint – reject 



Utilizing Bivariate Sharing for Simplicity and Efficiency 



f(x) 
f1(x) f2(x) f3(x) fn-2(x) fn-1(x) fn(x) 

g1(x) 

g2(x) 

g3(x) 

gn-2(x) 

gn-1(x) 

gn(x) 

g(x) 

P1 P2 P3 Pn-2 Pn-1 
Pn 

f(0) = s 



f(x) 
f1(x) f2(x) f3(x) fn-2(x) fn-1(x) fn(x) 

g1(x) 

g2(x) 

g3(x) 

gn-2(x) 

gn-1(x) 

gn(x) 

g(x) 

P1 P2 P3 Pn-2 Pn-1 
Pn 

f(0) = s 

Sub-Sharing for free! 



 The invariant is changed: univariate --> bivariate 

 Sub-sharing for free – no need for robust sub-sharing 

 feval and other tools are much more efficient and simpler 
◦ All the constructions become simpler 

◦ including the proof of security 

 But maintaining the invariant requires some work 

 Reduced the communication complexity of BGW by 
quadratic factor 
◦ Best constant-round multiplication protocol (by a linear factor) 

◦ Incomparable to player elimination techniques that have lower 
communication complexity but higher round complexity 

 



 We study perfect multiplication 

 We filled a missing gap in the BGW protocol 

 A full proof of security 

 A simpler construction  
◦ more efficient 

◦ and simpler 

 

 

 

 Thank You! 


