Perfectly-Secure Multiplication for Any t<n/3

Gilad Asharov

Yehuda Lindell Tal Rabin

Bar-Ilan University, Israel

Bar-Ilan University, Israel IBM Research, New York

Secure Multiparty Computation

- A set of parties with private inputs wish to compute some joint function of their inputs
- Parties wish to preserve some security properties. E.g., privacy and correctness
 - Example: secure election protocol
- Security must be preserved in the face of adversarial behavior by some of the participants, or by an external party

The BGW Protocol [STOC 1988]

- Michael Ben-Or, Shafi Goldwasser and Avi Wigderson
- A protocol for general multiparty computation
 - Perfectly secure
 - Adaptively secure
 - Concurrently secure
- Elegant and beautiful construction
- A huge impact on our field

Our Results

- A full specification of the BGW multiplication protocol
 - The protocol requires a new step for the case of n/4 ≤ t < n/3
 - A full proof of security
- A new multiplication protocol
 - More efficient
 - Simpler
 - Constant round per multiplication (as BGW)

Related Work

- Perfect multiplication based on homomorphic secret sharing
 - [Cramer, Damgard, Maurer 00]
- Efficiency of perfect multiplication
 - Player elimination technique [Hirt, Maurer, Przydatek 00]
 [Hirt, Maurer 01], [Beerliova-Trubiniova, Hirt 06] [Hirt, Nielsen 06] [Damgard, Nielsen 07] [Trubiniova, Hirt 08]
 - Very efficient protocols
 - The round complexity per multiplication depends on the number of parties

The BGW Protocol

The Computation Stage

- The invariant:
 - Each party holds shares of a and b
- Addition Gate:
 - Each party locally adds its shares
 - The result is a share of a random polynomial of degree-t that hides *a+b*

The Computation Stage

- The invariant:
 - Each party holds shares of a and b
- Addition Gate:
 - Each party locally adds its shares
 - The result is a share of a random polynomial of degree-t that hides *a+b*
- Multiplication Gate:
 - Each party locally multiplies its shares
 - Result is a share of a poly of degree-2t that hides $a \cdot b$
 - Run an interactive protocol to reduce the degree

The Multiplication Protocol (simplification according to [GRR98])

Possible whenever at least 2t+1 shares were

sub-shared correctly

Moving to the Malicious* – Problem

First BGW Tool: Robust Sub-Sharing

Second BGW Tool: Verifying Product

Multiplication - Overview

b ₁	b ₂	b ₃		hides b	b _{n-2}	b _{n-1}	b _n
B ₁ (1)	B ₁ (2)	B ₁ (3)		hides b₁	B ₁ (n-2)	B ₁ (n-1)	B ₁ (n)
B ₂ (1)	B ₂ (2)	B ₂ (3)	•••	hides b ₂	B ₂ (n-2)	B ₂ (n-1)	B ₂ (n)
	•••				•••		

C ₁ (1)	C ₁ (2)	C ₁ (3)	hides a ₁ b ₁	C ₁ (n-2)	C ₁ (n-1)	C ₁ (n)
-C2(1)	C ₂ (2)	C ₂ (3)	hides a ₂ b ₂	C ₂ (n-2)	C ₂ (n-1)	C ₂ (n)

Multiplication - Overview

b ₁	b ₂	b ₃		hides b	b _{n-2}	b _{n-1}	b _n
B ₁ (1)	B ₁ (2)	B ₁ (3)		hides b₁	B ₁ (n-2)	B ₁ (n-1)	B ₁ (n)
B ₂ (1)	B ₂ (2)	B ₂ (3)	•••	hides b ₂	B ₂ (n-2)	B ₂ (n-1)	B ₂ (n)
	•••				•••		

C ₁ (1)	C ₁ (2)	C ₁ (3)	hides a ₁ b ₁	C ₁ (n-2)	C ₁ (n-1)	C ₁ (n)
-C2(1)	C ₂ (2)	C ₂ (3)	hides a ₂ b ₂	C ₂ (n-2)	C ₂ (n-1)	C ₂ (n)

The Second Tool: Proving that c_i=a_ib_i

Inputs:

The parties need to verify that C_i(x) is of degree-t

• The free coefficient of $C_i(x)$ is always $A_i(0)B_i(0) = a_ib_i$

 Choosing D₁,...,D_t inappropriately can end up with a polynomial of degree higher than t

Verifying the Degree

- Parties have shares of C_i(x) and want to check that it is of degree-t
- P_i distributes C'_i(x) using VSS (guarantees degree-t) and claims that C'_i(x) = C_i(x)
 - C_i(0) has the correct free coefficient, but unknown degree
 - C'_i(x) is of degree-t, not necessarily the correct free coefficient
- Each party P_j checks that $C'_i(j) = C_i(j)$
 - If $C'_i(j) \neq C_i(j) it$ broadcasts a "**complaint**"
- If number of complaints > t : "reject"
 - need more than t complaints, since the adversary may complain about an honest dealer

A Subtle Attack on this Solution

- The dealer creates D₁(x),...,D_t(x) not according to the protocol and so C_i(x) is of degree higher than t
- It chooses C'_i(x) of degree-t such that C'_i(j) = C_i(j) for t+1 honest parties, but C'_i(0) ≠ a_ib_i
- The corrupted parties do not complain
- Result:
 - t+1 honest parties do not complain
 - t corrupted parties **do not** complain
 - t honest parties complain
- The polynomial is accepted

Our Solution: Feval

Verifying the Degree

- For each complaining party P_k the parties check if its complaint is fake or legitimate:
 - Invoke f^{eval} on the shares of $A_i(x)$ and receive $A_i(k)$
 - Invoke f^{eval} on the shares of $B_i(x)$ and receive $B_i(k)$
 - •••
 - The values C'_i(k), $A_i(k)$, $B_i(k)$, $D_1(k)$, ..., $D_t(k)$ become public
 - The parties compute $C_i(k)$, and compare it to $C'_i(k)$
 - If $C_i(k) = C'_i(k)$: the complaint is fake
 - If $C_i(k) \neq C'_i(k)$: the complaint is legitimate
- If there is one legitimate complaint reject

A New Constant-Round Multiplication Protocol

Utilizing Bivariate Sharing for Simplicity and Efficiency

Verifiable Secret Sharing

But...

Simpler Construction

- The invariant is changed: univariate --> bivariate
- Sub-sharing for free no need for robust sub-sharing
- f^{eval} and other tools are much more efficient and simpler
 - All the constructions become simpler
 - including the proof of security
- But maintaining the invariant requires some work
- Reduced the communication complexity of BGW by quadratic factor
 - Best constant-round multiplication protocol (by a linear factor)
 - Incomparable to player elimination techniques that have lower communication complexity but higher round complexity

Summary

- We study perfect multiplication
- We filled a missing gap in the BGW protocol
- A full proof of security
- A simpler construction
 - more efficient
 - and simpler

Thank You!