The Attack

Relation To Truncated Differential Attack

ヘロト ヘポト ヘヨト ヘヨト

э

1/24

Conclusion

Cryptanalysis of PRINTCIPHER: The Invariant Subspace Attack

Gregor Leander, Mohamed Abdelraheem, Huda AlKhzaimi, and Erik Zenner

DTU Mathematics

CRYPTO 2011

Description	PRINTCIPHER

The Attack

Relation To Truncated Differential Attack

Outline

2 The Attack

3 Relation To Truncated Differential Attack

4 Conclusion

Description	of	PRIN	TCIPHER

The Attack

Relation To Truncated Differential Attack

Outline

- 2 The Attack
- 3 Relation To Truncated Differential Attack

4 Conclusion

The Attack

Relation To Truncated Differential Attack

Conclusion

Introduction

PRINTCIPHER

Lightweight SPN block cipher proposed at CHES 2010.

Idea: Take advantage of a key.

Claim

Secure against known attacks.

So far: Attacks on reduced-round variants.

The Attack

Relation To Truncated Differential Attack

Conclusion

4/24

One round of PRINTCIPHER-48

- 48-bits block size, 48 rounds that use the same 80-bit key.
- Each two bits of k₂ permute 3 state bits in a certain way.
- Only 4 out of 6 possible permutations are allowed:

$$p$$
: $|||$ $X|$ $|X|$ X X X k_2 :00011011Invalid

Description of PRINTCIPHER	The Attack	Relation To Truncated Differential Attack	Conclusion
Simplify Things			

<ロ> (四) (四) (日) (日) (日)

э

5/24

In this talk (not in the paper!): A simpler variant of PRINTCIPHER.

- Block size 24
- Fix the permutation key
- Modified Sbox

Description of PRINTCIPHER 000●0	The Attack	Relation To Truncated Differential Attack	Conclusion
Sbox Property			

Modified Sbox:

S(000) = 000 S(001) = 001S(010) = 010 S(100) = 100

Can be written as:

$$S(00*) = 00*$$

 $S(0*0) = 0*0$
 $S(*00) = *00$

Remark

The original Sbox fulfils something similar.

The Attack

Relation To Truncated Differential Attack

Conclusion

DTU

7/24

э

Simplified Version

$$S(00*) = 00*$$

 $S(0*0) = 0*0$
 $S(*00) = *00$

Description	PRINTCIPHER

The Attack

Relation To Truncated Differential Attack

Outline

Description of PRINTCIPHER

- 2 The Attack
- 8 Relation To Truncated Differential Attack

4 Conclusion

Description of PRINTCIPHER	The Attack	Relation To Truncated Differential Attack	C
Let's Focus			

DTU

9/24

・ロト ・ 日 ・ ・ 目 ・ ・

Invariant Subspace for P

Set of highlighted bits is mapped onto itself.

	00000	
What about S		

An Invariant Subspace alone is not a problem!

Question

What about the S-layer?

For this: we fix some bits

- in the plaintext
- in the (XOR)-key
- \Rightarrow The attack does not work for all keys.

The Attack

Relation To Truncated Differential Attack

Conclusion

Simplified Version

UTU 북태 《 마 〉 《 문 〉 《 문 〉 《 문 〉 이 이 이 11/24

The Attack

Relation To Truncated Differential Attack

Conclusion

Simplified Version

UTU ま ペロン ペラン ペミン ミン ミ のへで 11/24

The Attack

Relation To Truncated Differential Attack

Conclusion

Simplified Version

UTU ま ペロン ペラン ペミン ミン ミ のへで 11/24

The Attack

Relation To Truncated Differential Attack

Conclusion

Simplified Version

UTU 북북 《미》《문》《문》 문 외익은 11/24

The Attack

Relation To Truncated Differential Attack

Conclusion

Simplified Version

UTU ま ペロン ペラン ペミン ミン ミ のへで 11/24

The Attack

Relation To Truncated Differential Attack

Conclusion

Simplified Version

UTU ま ペロン ペラン ペミン ミン ミ のへで 11/24

The Attack

Relation To Truncated Differential Attack

Conclusion

Simplified Version

The Attack

Relation To Truncated Differential Attack

Conclusion

Simplified Version

The Attack

Relation To Truncated Differential Attack

Conclusion

DTU

11/24

э

(a)

Simplified Version

S(00*) = 00* S(0*0) = 0*0 S(*00) = *00

The Attack

Relation To Truncated Differential Attack

Conclusion

Simplified Version

S(00*) = 00* S(0*0) = 0*0 S(*00) = *00

э

< 日 > < 同 > < 回 > < 回 > < □ > <

The Attack

Relation To Truncated Differential Attack

Conclusion

Simplified Version

S(00*) = 00* S(0*0) = 0*0 S(*00) = *00

э

< 日 > < 同 > < 回 > < 回 > < □ > <

The Attack

Relation To Truncated Differential Attack

Conclusion

An Iterative One-Round Distinguisher

If certain key bits are zero:

Distinguisher

Zero bits in the plaintext \Rightarrow zero bits in the ciphertext.

Some Remarks:

- Round-constant does not help
- Works for the whole cipher

Let's look at PRINTCIPHER-48

The Attack

Relation To Truncated Differential Attack

Conclusion

The Attack on PRINTCIPHER-48

13/24

The Attack

Relation To Truncated Differential Attack

Conclusion

14/24

PRINTCIPHER-48 Attack

Summary

- Prob 1 distinguisher for full cipher
- 2⁵⁰ out of 2⁸⁰ keys weak.
- Similar for PRINTCIPHER-96

Abstraction:

$$R(U\oplus d)=U\oplus c$$

If $k \in U \oplus (d \oplus c)$

$$R_k(U\oplus d)=U\oplus d$$

Thus an invariant subspace

Description	PRINTCIPHER

The Attack

Relation To Truncated Differential Attack

Outline

- 2 The Attack
- 3 Relation To Truncated Differential Attack

4 Conclusion

The Attack

Relation To Truncated Differential Attack

Conclusion

The Probability of A Characteristic

Given a r-round differential characteristic

$$\alpha \xrightarrow{p} \alpha \xrightarrow{p} \cdots \xrightarrow{p} \alpha$$

Theorem

Given independent round keys the average probability is p^r

Hypothesis of Stochastic Equivalence

All keys behave similarly.

The Attack

Relation To Truncated Differential Attack

Conclusion

Two Round Characteristics

$$\mathsf{A} := \{ \mathsf{x} \mid \mathsf{R}(\mathsf{x}) \oplus \mathsf{R}(\mathsf{x} \oplus \alpha) = \alpha \}$$

"A is the set of good pairs"

Two Rounds, fixed Key

Probability of the characteristic for a key K:

$$\frac{|(R(A)\oplus K)\cap A|}{2^n}$$

The Attack

Relation To Truncated Differential Attack

Conclusion

☱

18/24

э

Two Rounds, fixed Key

Good Pairs: $A := \{x \mid R(x) \oplus R(x \oplus \alpha) = \alpha\}$ Probability (scaled): $|(R(A) \oplus K) \cap A|$

The Attack

Relation To Truncated Differential Attack

Conclusion

Two Rounds, fixed Key

Good Pairs: $A := \{x \mid R(x) \oplus R(x \oplus \alpha) = \alpha\}$ Probability (scaled): $|(R(A) \oplus K) \cap A|$

18/24

☱

The Attack

Relation To Truncated Differential Attack

Conclusion

୬ ର ୍ଦ 19/24

Back To PRINTCIPHER-48

Good Pairs: $A := \{x \mid R(x) \oplus R(x \oplus \alpha) = \alpha\}$

Observations for special α

- A is an affine subspace $U \oplus d$
- U is invariant under R
- \Rightarrow $R(A) = U \oplus c$

Probability (scaled):

$$\left| (R(A) \oplus K) \bigcap A \right| = \left| (U \oplus c \oplus K) \bigcap (U \oplus d) \right|$$

The Attack

Relation To Truncated Differential Attack

э

20/24

Conclusion

Two Rounds, fixed Key: PRINTCIPHER-48

Good Pairs: $A := \{x \mid R(x) \oplus R(x \oplus \alpha) = \alpha\}$ Probability (scaled): $|(R(A) \oplus K) \cap A|$

	A	
R(A)+K		

The Attack

Relation To Truncated Differential Attack

Conclusion

Two Rounds, fixed Key: PRINTCIPHER-48

Good Pairs: $A := \{x \mid R(x) \oplus R(x \oplus \alpha) = \alpha\}$ Probability (scaled): $|(R(A) \oplus K) \cap A|$

	A	
R(A)+K		

	R(<i>A</i> 4)+K	

Description of PRINTCIPHER	The Attack	Relation To Truncated Differential Attack	Conclusion
PRINTCIPHER-4	8		

There exist a r-round differential characteristic

$$\alpha \to \alpha \to \dots \to \alpha$$

such that

$$p_k = \begin{cases} 2^{-16} & \text{if } k \text{ is weak} \\ 0 & \text{if } k \text{ is not weak} \end{cases}$$

<ロ> (四) (四) (日) (日) (日)

21/24

Remarks

- Probabilities do not multiply.
- Keys behave very differently

Description	PRINTCIPHER

The Attack

Relation To Truncated Differential Attack

Conclusion

Outline

Description of PRINTCIPHER

2 The Attack

3 Relation To Truncated Differential Attack

4 Conclusion

Description	PRINT	CIPHER

The Attack

Relation To Truncated Differential Attack

<ロ> <回> <回> <回> < 回> < 回>

Conclusion

23/24

Conclusion

Summary: Invariant Subspace Attack

- Weak keys for full PRINTCIPHER-48 and PRINTCIPHER-96
- Strange behavior of differential characteristics
- Similar observation for linear attacks

Future Work

- Generalize the attack
- Key recovery variant
- Explain linear biases directly

Description of PRINTCIPHER	The Attack	Relation To Truncated Differential Attack	Conclusion
The End			

Thanks!