
Shai Halevi, IBM T.J. Watson

Yehuda Lindell, Bar-Ilan University

Benny Pinkas, Bar-Ilan University

 Can elections, auctions, statistical analysis of
distributed parties’ data really be carried out
using secure computation?

 Does our model of secure computation really
model the needs of these applications?
◦ And I’m not talking about efficiency concerns…

 In all known protocols, all parties must
interact simultaneously

 Arguably, this is a huge obstacle to adoption
◦ A department wants to carry out a faculty tenure

vote using a secure protocol

 When do they run the protocol?

◦ A website wishes to securely aggregate statistics
about users

 Each user gives her information only when connected

 The secure computation model:

 The real-world web model:

 Can secure computation be made non-
simultaneous?
◦ A natural theoretical question

 Deepens our understanding of the required
communication model for secure computation

◦ Important ramifications to practice

 Especially if this can be done efficiently

 Note: fully homomorphic encryption does not solve the problem

 Parties
◦ One server 𝑺

◦ 𝒏 parties 𝑷𝟏, … , 𝑷𝒏

 Communication model
◦ Each party interacts with the server exactly once

 In all of our protocols, this interaction is a single
message from the server to the party and back, but this
is not essential to the model

◦ At the end, the server obtains the output

 A protocol for this setting is called one pass

 Since the protocol is one-pass, the
computation carried out by 𝑷𝒊+𝟏, … , 𝑷𝒏 and 𝑺
is of the residual function
 𝒈𝒊 𝒙𝒊+𝟏, … , 𝒙𝒏 = 𝒇(𝒙𝟏, … , 𝒙𝒊, 𝒙𝒊+𝟏, … , 𝒙𝒏)

 If 𝑷𝒊+𝟏, … , 𝑷𝒏 and 𝑺 are all corrupted and
colluding, they can compute 𝒈𝒊 𝒙𝒊+𝟏, … , 𝒙𝒏
and 𝒈𝒊 𝒙′𝒊+𝟏, … , 𝒙′𝒏 and so on, on many inputs
◦ This is not allowed in classic secure computation

but is inherent to the one-pass model

 A decomposition of a function 𝒇 𝒙𝟏, … , 𝒙𝒏 is a
series of 𝒏 two-input functions 𝒇𝟏, … 𝒇𝒏 such
that 𝒇𝒏 ⋯𝒇𝟐 𝒇𝟏 𝒙𝟏 , 𝒙𝟐 ⋯𝒙𝒏 = 𝒇 𝒙𝟏, … , 𝒙𝒏
◦ In the one-pass setting 𝑷𝒊 (and 𝑺) compute 𝒇𝒊 and

pass on the result

◦ If 𝑷𝒊+𝟏, … , 𝑷𝒏 and 𝑺 are all corrupted and colluding,
then they learn the value 𝒇𝒊 ⋯𝒇𝟐 𝒇𝟏 𝒙𝟏 , 𝒙𝟐 ⋯𝒙𝒊

 How much does 𝒇𝒊 ⋯𝒇𝟐 𝒇𝟏 𝒙𝟏 , 𝒙𝟐 ⋯𝒙𝒊 reveal?

 If it reveals nothing more than what can be
computed by the residual function
 𝒈𝒊 𝒙𝒊+𝟏, … , 𝒙𝒏 = 𝒇(𝒙𝟏, … , 𝒙𝒊, 𝒙𝒊+𝟏, … , 𝒙𝒏)
then it is minimal disclosure

 Define 𝒇𝟏 𝒙𝟏 = 𝒙𝟏, 𝒇𝟐 𝒚𝟏, 𝒙𝟐 = 𝒚𝟏, 𝒙𝟐 = (𝒙𝟏, 𝒙𝟐),
and so on (all are identity functions), and 𝒇𝒏 = 𝒇
◦ If 𝑷𝒏 and 𝑺 are corrupted, all is revealed

 Consider the SUM function and define
 𝒇𝒊 𝒚𝒊−𝟏, 𝒙𝒊 = 𝒚𝒊−𝟏 + 𝒙𝒊
◦ Given 𝒚𝒊 can learn nothing more than sum of first 𝒊

◦ But this is computable from the residual function

◦ This is minimal disclosure

 We follow the real/ideal simulation paradigm

 Security is formalized as in the standard
setting with one exception
◦ If the server is corrupted, then the adversary is

given 𝒇𝒊(𝒙𝟏, … , 𝒙𝒊) where 𝑷𝒊 is the last honest party

 A protocol one-pass securely computes a
decomposition if there exists an ideal simulator
such that real and ideal are indistinguishable
◦ The protocol is optimally private if the decomposition is

minimum disclosure

 Can this notion be achieved?

 If yes,
◦ Under what assumptions?

◦ At what cost?

 Binary symmetric functions
◦ Depend only on Hamming weight of input

◦ E.g., AND, OR, PARITY, MAJORITY

 Concise truth table representation
◦ Example: the MAJORITY function over 5 bits

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

In general, this
contains the

function output
on the relevant

weight

 Define 𝒚𝟏 = 𝒇𝟏 𝒙𝟏 to be the truth table, with
the 1st row erased if 𝒙𝟏 = 𝟏 and the last row
erased if 𝒙𝟏 = 𝟎

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

𝒙𝟏 = 𝟏

𝒙𝟏 = 𝟎

 Define 𝒇𝟐 𝒚𝟏, 𝒙𝟐 to be the truncated truth table,
with the last remaining row erased if 𝒙𝟐 = 𝟎 and
the first row erased if 𝒙𝟐 = 𝟏

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

𝒙𝟐 = 𝟏

𝒙𝟏 = 𝟎

 And so on…
◦ Note, each truth table can be efficiently computed

from the previous one

◦ Indeed, the output of 𝑴𝑨𝑱(𝟎𝟏𝟏𝟎𝟎) = 𝟎

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

𝒙𝟐 = 𝟏

𝒙𝟏 = 𝟎

𝒙𝟑 = 𝟏

𝒙𝟒 = 𝟎

𝒙𝟓 = 𝟎

 Why is this minimum disclosure?
◦ The truth table reveals nothing more than the

output of the function on the remaining inputs

 Main tool – layer rerandomizable encryption

◦ Denote 𝑬𝒑𝒌(𝒙; 𝒓) and

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝒙; 𝒓𝟏, … , 𝒓𝒏+𝟏 = 𝑬𝒑𝒌𝟏 ⋯𝑬𝒑𝒌𝒏+𝟏 𝒙; 𝒓𝒏+𝟏 ⋯ ; 𝒓𝟏

◦ This is layer rerandomizable if there exists an
efficient procedure that rerandomizes all layers (given
public keys)

◦ This can be constructed from any rerandomizable
encryption, and highly efficiently from ElGamal

 Note: all protocols assume PKI (essential here)

 Server 𝑺 encrypts the truth table under all
parties’ keys
◦ Using rerandomizable layer encryption

 For 𝒊 = 𝟏,… , 𝒏 (but in any order)
◦ Party 𝑷𝒊 retrieves current truth table from the server

◦ 𝑷𝒊 removes the first or last remaining row, decrypts
under its key, rerandomizes every entry of the truth
table, and sends to 𝑺

 After all parties conclude, all that remains is a
single row, which is the output

 Majority function with 5 parties

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

 The server 𝑺 computes the encrypted concise truth
table (𝒑𝒌𝟔 is the server’s public-key)

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

 𝑷𝟏 with input 𝒙𝟏 = 𝟎 erases

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

 𝑷𝟏 with input 𝒙𝟏 = 𝟎 erases, removes its key
and rerandomizes

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔

 𝑷𝟐 with input 𝒙𝟐 = 𝟏 erases

 𝑷𝟐 with input 𝒙𝟐 = 𝟏 erases, removes its key
and rerandomizes

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔

 𝑷𝟑 with input 𝒙𝟑 = 𝟏 erases

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟎; 𝒓𝟒, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

 𝑷𝟑 with input 𝒙𝟑 = 𝟏 erases, removes its key
and rerandomizes

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟎; 𝒓𝟒, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

 𝑷𝟒 with input 𝒙𝟒 = 𝟎 erases

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟎; 𝒓𝟓, 𝒓𝟔

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟏; 𝒓𝟓, 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

 𝑷𝟒 with input 𝒙𝟒 = 𝟎 erases, removes its key
and rerandomizes

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟎; 𝒓𝟓, 𝒓𝟔

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟏; 𝒓𝟓, 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

 A corrupted 𝑷𝟓 colluding with a corrupted
server know that the first 4 parties were
divided evenly, but nothing else

 If server is honest, no one learns anything

 If server is corrupt, it cannot decrypt anything
which is still encrypted under an honest
party’s public-key
◦ Security level achieved when last few parties are

corrupted is the same as if they just didn’t
participate to start with

 Rerandomization ensures that the row
removed is not learned

 Each party computes on average about 𝟑𝒏 𝟐
exponentiations
◦ We can do 𝟏𝟎𝟎𝟎 − 𝟐𝟎𝟎𝟎 exponentiations per second,

making this protocol practical even for thousands of
users (unless many come at the same time)

 For malicious adversaries
◦ Need to add digital signatures and ZK proofs (these

are just Diffie-Hellman tuple proofs)

◦ The concrete cost is less than 𝟖𝒏𝟐 (with Fiat-Shamir)

◦ This is still practical for not too many parties

 About 10 seconds for 40 parties (tenure example)

 Highly efficient optimally private protocols for:
◦ Symmetric functions over ℤ𝒄

◦ Sum function over large domain

◦ Selection functions

 A general feasibility result:

◦ Any decomposition 𝒇𝟏, … , 𝒇𝒏 can be securely
computed, under the DDH assumption (and NIZK
for malicious)

◦ This can be used for any decomposition (minimal or not)

 The actual security derived depends on the decomposition

 Minimal is best; if not, then it depends on the application

 Fully interactive secure computation is a problem
in practice
◦ A one-pass client/server protocol is essential for many

applications, and is also interesting from a theoretical
point of view

 Our results
◦ Introduced the model and definitions

◦ Studied inherent limitations and use function
decomposition to model this

◦ Constructed highly efficient and practical protocols exist
for many natural problems in this setting

◦ Proved general feasibility for any decomposition

