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 Can elections, auctions, statistical analysis of 
distributed parties’ data really be carried out 
using secure computation? 

 

 Does our model of secure computation really 
model the needs of these applications? 
◦ And I’m not talking about efficiency concerns… 



 In all known protocols, all parties must 
interact simultaneously 

 

 Arguably, this is a huge obstacle to adoption 
◦ A department wants to carry out a faculty tenure 

vote using a secure protocol 

 When do they run the protocol? 

◦ A website wishes to securely aggregate statistics 
about users 

 Each user gives her information only when connected 



 The secure computation model: 



 The real-world web model: 



 Can secure computation be made non-
simultaneous? 
◦ A natural theoretical question 

 Deepens our understanding of the required 
communication model for secure computation 

◦ Important ramifications to practice 

 Especially if this can be done efficiently 

 

 

 

 Note: fully homomorphic encryption does not solve the problem 



 Parties 
◦ One server 𝑺 

◦ 𝒏 parties 𝑷𝟏, … , 𝑷𝒏 
 

 Communication model 
◦ Each party interacts with the server exactly once 

 In all of our protocols, this interaction is a single 
message from the server to the party and back, but this 
is not essential to the model 

◦ At the end, the server obtains the output 
 

 A protocol for this setting is called one pass 



 Since the protocol is one-pass, the 
computation carried out by 𝑷𝒊+𝟏, … , 𝑷𝒏 and 𝑺 
is of the residual function   
  𝒈𝒊 𝒙𝒊+𝟏, … , 𝒙𝒏 = 𝒇(𝒙𝟏, … , 𝒙𝒊, 𝒙𝒊+𝟏, … , 𝒙𝒏) 

 

 If 𝑷𝒊+𝟏, … , 𝑷𝒏 and 𝑺 are all corrupted and 
colluding, they can compute 𝒈𝒊 𝒙𝒊+𝟏, … , 𝒙𝒏  
and 𝒈𝒊 𝒙′𝒊+𝟏, … , 𝒙′𝒏  and so on, on many inputs 
◦ This is not allowed in classic secure computation 

but is inherent to the one-pass model 



 A decomposition of a function 𝒇 𝒙𝟏, … , 𝒙𝒏  is a 
series of 𝒏 two-input functions 𝒇𝟏, … 𝒇𝒏 such 
that 𝒇𝒏 ⋯𝒇𝟐 𝒇𝟏 𝒙𝟏 , 𝒙𝟐 ⋯𝒙𝒏 = 𝒇 𝒙𝟏, … , 𝒙𝒏  
◦ In the one-pass setting 𝑷𝒊 (and 𝑺) compute 𝒇𝒊 and 

pass on the result 

◦ If 𝑷𝒊+𝟏, … , 𝑷𝒏 and 𝑺 are all corrupted and colluding, 
then they learn the value 𝒇𝒊 ⋯𝒇𝟐 𝒇𝟏 𝒙𝟏 , 𝒙𝟐 ⋯𝒙𝒊  

 



 How much does 𝒇𝒊 ⋯𝒇𝟐 𝒇𝟏 𝒙𝟏 , 𝒙𝟐 ⋯𝒙𝒊  reveal? 

 

 If it reveals nothing more than what can be 
computed by the residual function   
  𝒈𝒊 𝒙𝒊+𝟏, … , 𝒙𝒏 = 𝒇(𝒙𝟏, … , 𝒙𝒊, 𝒙𝒊+𝟏, … , 𝒙𝒏)     
then it is minimal disclosure 

 

 

 

 

 



 Define 𝒇𝟏 𝒙𝟏 = 𝒙𝟏, 𝒇𝟐 𝒚𝟏, 𝒙𝟐 = 𝒚𝟏, 𝒙𝟐 = (𝒙𝟏, 𝒙𝟐), 
and so on (all are identity functions), and 𝒇𝒏 = 𝒇 
◦ If 𝑷𝒏 and 𝑺 are corrupted, all is revealed 

 

 Consider the SUM function and define   
   𝒇𝒊 𝒚𝒊−𝟏, 𝒙𝒊 = 𝒚𝒊−𝟏 + 𝒙𝒊 
◦ Given 𝒚𝒊 can learn nothing more than sum of first 𝒊 

◦ But this is computable from the residual function 

◦ This is minimal disclosure 



 We follow the real/ideal simulation paradigm 

 Security is formalized as in the standard 
setting with one exception 
◦ If the server is corrupted, then the adversary is 

given 𝒇𝒊(𝒙𝟏, … , 𝒙𝒊) where 𝑷𝒊 is the last honest party 

 

 A protocol one-pass securely computes a 
decomposition if there exists an ideal simulator 
such that real and ideal are indistinguishable 
◦ The protocol is optimally private if the decomposition is 

minimum disclosure 



 Can this notion be achieved? 

 If yes, 
◦ Under what assumptions? 

◦ At what cost? 



 Binary symmetric functions 
◦ Depend only on Hamming weight of input 

◦ E.g., AND, OR, PARITY, MAJORITY 

 Concise truth table representation 
◦ Example: the MAJORITY function over 5 bits 

Hamming 
Weight 

Output 

0 0 

1 0 

2 0 

3 1 

4 1 

5 1 

In general, this 
contains the 

function output 
on the relevant 

weight 



 Define 𝒚𝟏 = 𝒇𝟏 𝒙𝟏  to be the truth table, with 
the 1st row erased if 𝒙𝟏 = 𝟏 and the last row 
erased if 𝒙𝟏 = 𝟎 

Hamming 
Weight 

Output 

0 0 

1 0 

2 0 

3 1 

4 1 

5 1 

𝒙𝟏 = 𝟏 

𝒙𝟏 = 𝟎 



 Define 𝒇𝟐 𝒚𝟏, 𝒙𝟐  to be the truncated truth table, 
with the last remaining row erased if 𝒙𝟐 = 𝟎 and 
the first row erased if 𝒙𝟐 = 𝟏 

Hamming 
Weight 

Output 

0 0 

1 0 

2 0 

3 1 

4 1 

5 1 

𝒙𝟐 = 𝟏 

𝒙𝟏 = 𝟎 



 And so on… 
◦ Note, each truth table can be efficiently computed 

from the previous one 

 

 

 

 

 

 

 

 
◦ Indeed, the output of 𝑴𝑨𝑱(𝟎𝟏𝟏𝟎𝟎) = 𝟎 

Hamming 
Weight 

Output 

0 0 

1 0 

2 0 

3 1 

4 1 

5 1 

𝒙𝟐 = 𝟏 

𝒙𝟏 = 𝟎 

𝒙𝟑 = 𝟏 

𝒙𝟒 = 𝟎 

𝒙𝟓 = 𝟎 



 

 Why is this minimum disclosure? 
◦ The truth table reveals nothing more than the 

output of the function on the remaining inputs 

 



 Main tool – layer rerandomizable encryption 

◦ Denote 𝑬𝒑𝒌(𝒙; 𝒓) and    

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝒙; 𝒓𝟏, … , 𝒓𝒏+𝟏 = 𝑬𝒑𝒌𝟏 ⋯𝑬𝒑𝒌𝒏+𝟏 𝒙; 𝒓𝒏+𝟏 ⋯ ; 𝒓𝟏  

◦ This is layer rerandomizable if there exists an 
efficient procedure that rerandomizes all layers (given 
public keys) 

◦ This can be constructed from any rerandomizable 
encryption, and highly efficiently  from ElGamal 

 

 Note: all protocols assume PKI (essential here) 



 Server 𝑺 encrypts the truth table under all 
parties’ keys 
◦ Using rerandomizable layer encryption 

 For 𝒊 = 𝟏,… , 𝒏 (but in any order) 
◦ Party 𝑷𝒊 retrieves current truth table from the server 

◦ 𝑷𝒊 removes the first or last remaining row, decrypts 
under its key, rerandomizes every entry of the truth 
table, and sends to 𝑺  

 After all parties conclude, all that remains is a 
single row, which is the output 



 Majority function with 5 parties 

Hamming 
Weight 

Output 

0 0 

1 0 

2 0 

3 1 

4 1 

5 1 



 The server 𝑺 computes the encrypted concise truth 
table (𝒑𝒌𝟔 is the server’s public-key) 

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔  



 𝑷𝟏 with input 𝒙𝟏 = 𝟎 erases  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔  



 𝑷𝟏 with input 𝒙𝟏 = 𝟎 erases, removes its key 
and rerandomizes 

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔  



𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔  

 𝑷𝟐 with input 𝒙𝟐 = 𝟏 erases 



 𝑷𝟐 with input 𝒙𝟐 = 𝟏 erases, removes its key 
and rerandomizes 

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔  



𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔  

 𝑷𝟑 with input 𝒙𝟑 = 𝟏 erases 



𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟎; 𝒓𝟒, … , 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔  

 𝑷𝟑 with input 𝒙𝟑 = 𝟏 erases, removes its key 
and rerandomizes 



𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟎; 𝒓𝟒, … , 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔  

 𝑷𝟒 with input 𝒙𝟒 = 𝟎 erases 



𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟎; 𝒓𝟓, 𝒓𝟔  

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟏; 𝒓𝟓, 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔  

 𝑷𝟒 with input 𝒙𝟒 = 𝟎 erases, removes its key 
and rerandomizes 



𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟎; 𝒓𝟓, 𝒓𝟔  

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟏; 𝒓𝟓, 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔  

 A corrupted 𝑷𝟓 colluding with a corrupted 
server know that the first 4 parties were 
divided evenly, but nothing else 



 If server is honest, no one learns anything 

 If server is corrupt, it cannot decrypt anything 
which is still encrypted under an honest 
party’s public-key 
◦ Security level achieved when last few parties are 

corrupted is the same as if they just didn’t 
participate to start with 

 Rerandomization ensures that the row 
removed is not learned 

  



 Each party computes on average about 𝟑𝒏 𝟐  
exponentiations 
◦ We can do 𝟏𝟎𝟎𝟎 − 𝟐𝟎𝟎𝟎 exponentiations per second, 

making this protocol practical even for thousands of 
users (unless many come at the same time) 

 For malicious adversaries 
◦ Need to add digital signatures and ZK proofs (these 

are just Diffie-Hellman tuple proofs) 

◦ The concrete cost is less than 𝟖𝒏𝟐 (with Fiat-Shamir) 

◦ This is still practical for not too many parties 

 About 10 seconds for 40 parties (tenure example) 



 Highly efficient optimally private protocols for: 
◦ Symmetric functions over ℤ𝒄 

◦ Sum function over large domain 

◦ Selection functions 
 

 A general feasibility result:  

◦ Any decomposition 𝒇𝟏, … , 𝒇𝒏 can be securely 
computed, under the DDH assumption (and NIZK 
for malicious) 
 

◦ This can be used for any decomposition (minimal or not) 

 The actual security derived depends on the decomposition 

 Minimal is best; if not, then it depends on the application 

 

 

 



 Fully interactive secure computation is a problem 
in practice 
◦ A one-pass client/server protocol is essential for many 

applications, and is also interesting from a theoretical 
point of view 

 Our results 
◦ Introduced the model and definitions 

◦ Studied inherent limitations and use function 
decomposition to model this 

◦ Constructed highly efficient and practical protocols exist 
for many natural problems in this setting 

◦ Proved general feasibility for any decomposition 


