Secure Computation on the Web: Computing without Simultaneous Interaction

Shai Halevi, IBM T.J. Watson Yehuda Lindell, Bar–Ilan University Benny Pinkas, Bar–Ilan University

My Standard First Slide

Secure Computation

- A set of parties with private inputs
- Parties wish to jointly compute a function of their inputs so that certain security properties (like privacy, correctness and independence of inputs) are preserved
- Properties must be ensured even if some of the parties attack the protocol
- Models any problem:
 - Elections, auctions, private statistical analysis,...

A Question

- Can elections, auctions, statistical analysis of distributed parties' data really be carried out using secure computation?
- Does our model of secure computation really model the needs of these applications?
 And I'm not talking about efficiency concerns...

A Big Problem

In all known protocols, all parties must interact <u>simultaneously</u>

Arguably, this is a huge obstacle to adoption

- A department wants to carry out a faculty tenure vote using a secure protocol
 - When do they run the protocol?
- A website wishes to securely aggregate statistics about users
 - Each user gives her information only when connected

Stated Differently

The secure computation model:

Stated Differently

The real-world web model:

An Important Question

- Can secure computation be made nonsimultaneous?
 - A natural theoretical question
 - Deepens our understanding of the required communication model for secure computation
 - Important ramifications to practice
 - Especially if this can be done efficiently

Note: fully homomorphic encryption does not solve the problem

Our Model

Parties

- One server S
- n parties P_1 , ..., P_n

Communication model

- Each party interacts with the server **exactly once**
 - In all of our protocols, this interaction is a single message from the server to the party and back, but this is not essential to the model
- At the end, the server obtains the output

A protocol for this setting is called <u>one pass</u>

Residual Function Computation

Since the protocol is one-pass, the computation carried out by $P_{i+1}, ..., P_n$ and *S* is of the residual function $q_i(x_{i+1}, ..., x_n) = f(x_1, ..., x_i, x_{i+1}, ..., x_n)$

 $g_i(x_{i+1}, ..., x_n) = J(x_1, ..., x_i, x_{i+1}, ..., x_n)$

If P_{i+1}, ..., P_n and S are all corrupted and colluding, they can compute g_i(x_{i+1}, ..., x_n) and g_i(x'_{i+1}, ..., x'_n) and so on, on many inputs
 This is not allowed in classic secure computation but is <u>inherent</u> to the one-pass model

Function Decomposition

- A decomposition of a function $f(x_1, ..., x_n)$ is a series of n two-input functions $f_1, ..., f_n$ such that $f_n(\cdots f_2(f_1(x_1), x_2) \cdots x_n) = f(x_1, ..., x_n)$
 - In the one-pass setting P_i (and S) compute f_i and pass on the result
 - If $P_{i+1}, ..., P_n$ and S are all corrupted and colluding, then they learn the value $f_i(\cdots f_2(f_1(x_1), x_2) \cdots x_i)$

Minimal Disclosure Decomposition

How much does $f_i(\cdots f_2(f_1(x_1), x_2) \cdots x_i)$ reveal?

If it reveals nothing more than what can be computed by the residual function

 $g_i(x_{i+1}, ..., x_n) = f(x_1, ..., x_i, x_{i+1}, ..., x_n)$ then it is <u>minimal disclosure</u>

Examples

- Define f₁(x₁) = x₁, f₂(y₁, x₂) = (y₁, x₂) = (x₁, x₂), and so on (all are identity functions), and f_n = f
 If P_n and S are corrupted, all is revealed
- Consider the SUM function and define $f_i(y_{i-1}, x_i) = y_{i-1} + x_i$
 - Given y_i can learn nothing more than sum of first i
 - But this is computable from the residual function
 - This is minimal disclosure

Definition of Security

- We follow the real/ideal simulation paradigm
- Security is formalized as in the standard setting with one exception
 - If the server is corrupted, then the adversary is given $f_i(x_1, ..., x_i)$ where P_i is the last honest party
- A protocol one-pass securely computes a decomposition if there exists an ideal simulator such that <u>real</u> and <u>ideal</u> are indistinguishable

 The protocol is optimally private if the decomposition is minimum disclosure

Questions

Can this notion be achieved?If yes,

- Under what assumptions?
- At what cost?

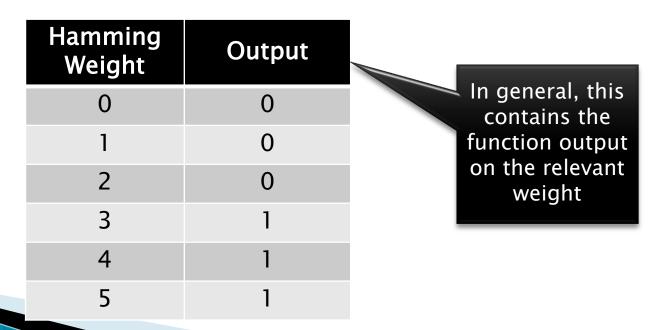
Practical Optimal Protocols

Binary symmetric functions

- Depend only on Hamming weight of input
- E.g., AND, OR, PARITY, MAJORITY

Concise truth table representation

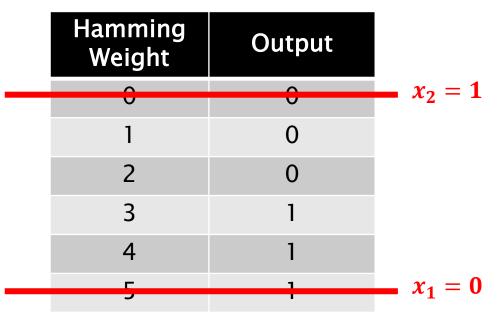
Example: the MAJORITY function over 5 bits



• Define $y_1 = f_1(x_1)$ to be the truth table, with the 1st row erased if $x_1 = 1$ and the last row erased if $x_1 = 0$



• Define $f_2(y_1, x_2)$ to be the truncated truth table, with the last remaining row erased if $x_2 = 0$ and the first row erased if $x_2 = 1$



And so on...

 Note, each truth table can be efficiently computed from the previous one

Indeed, the output of MAJ(01100) = 0

Why is this minimum disclosure?

 The truth table reveals nothing more than the output of the function on the remaining inputs

Practical Optimal Protocol for Binary Symmetric Functions

- Main tool layer rerandomizable encryption
 - Denote $E_{pk}(x; r)$ and

 $E_{pk_1,\dots,pk_{n+1}}(x;r_1,\dots,r_{n+1}) = E_{pk_1}(\cdots E_{pk_{n+1}}(x;r_{n+1})\cdots;r_1)$

- This is layer rerandomizable if there exists an efficient procedure that rerandomizes all layers (given public keys)
- This can be constructed from any rerandomizable encryption, and highly efficiently from ElGamal

Note: all protocols assume PKI (essential here)

The Protocol (Semi–Honest)

- Server S encrypts the truth table under all parties' keys
 - Using rerandomizable layer encryption
- For i = 1, ..., n (but in any order)
 - Party P_i retrieves current truth table from the server
 - *P_i* removes the first or last remaining row, decrypts under its key, rerandomizes every entry of the truth table, and sends to *S*
- After all parties conclude, all that remains is a single row, which is the output

Example

Majority function with 5 parties

Hamming Weight	Output
0	0
1	0
2	0
3	1
4	1
5	1

The server S computes the encrypted concise truth table (pk₆ is the server's public-key)

 $E_{pk_1,...,pk_6}(0;r_1,...,r_6)$

 $E_{pk_1,\ldots,pk_6}(0;r_1,\ldots,r_6)$

 $E_{pk_1,\ldots,pk_6}(0;r_1,\ldots,r_6)$

 $E_{pk_1,\ldots,pk_6}(1;r_1,\ldots,r_6)$

 $E_{pk_1,\ldots,pk_6}(1;r_1,\ldots,r_6)$

 $E_{pk_1,\ldots,pk_6}(1;r_1,\ldots,r_6)$

• P_1 with input $x_1 = 0$ erases

$$E_{pk_1,\ldots,pk_6}(0;r_1,\ldots,r_6)$$

 $E_{pk_1,...,pk_6}(0;r_1,...,r_6)$

 $E_{pk_1,\ldots,pk_6}(0;r_1,\ldots,r_6)$

 $E_{pk_1,...,pk_6}(1;r_1,...,r_6)$

 $E_{pk_1,\ldots,pk_6}(1;r_1,\ldots,r_6)$

P₁ with input x₁ = 0 erases, removes its key and rerandomizes

 $E_{pk_2,...,pk_6}(0;r_2,...,r_6)$

 $E_{pk_2,...,pk_6}(0;r_2,...,r_6)$

 $E_{pk_2,...,pk_6}(0;r_2,...,r_6)$

 $E_{pk_2,...,pk_6}(1;r_2,...,r_6)$

 $E_{pk_2,\ldots,pk_6}(1;r_2,\ldots,r_6)$

• P_2 with input $x_2 = 1$ erases

 $E_{pk_2,...,pk_6}(0;r_2,...,r_6)$

 $E_{pk_2,...,pk_6}(0;r_2,...,r_6)$

 $E_{pk_2,...,pk_6}(1;r_2,...,r_6)$

 $E_{pk_2,...,pk_6}(1;r_2,...,r_6)$

P₂ with input x₂ = 1 erases, removes its key and rerandomizes

 $E_{pk_3,...,pk_6}(0; r_3, ..., r_6)$

 $E_{pk_3,...,pk_6}(0;r_3,...,r_6)$

 $E_{pk_3,...,pk_6}(1;r_3,...,r_6)$

 $E_{pk_3,...,pk_6}(1;r_3,...,r_6)$

• P_3 with input $x_3 = 1$ erases

 $E_{pk_3,...,pk_6}(0; r_3, ..., r_6)$

 $E_{pk_3,...,pk_6}(1; r_3, ..., r_6)$

 $E_{pk_3,...,pk_6}(1;r_3,...,r_6)$

P₃ with input x₃ = 1 erases, removes its key and rerandomizes

 $E_{pk_4,...,pk_6}(0;r_4,...,r_6)$

 $E_{pk_4,...,pk_6}(1;r_4,...,r_6)$

 $E_{pk_4,...,pk_6}(1;r_4,...,r_6)$

• P_4 with input $x_4 = 0$ erases

 $E_{pk_4,...,pk_6}(0;r_4,...,r_6)$

 $E_{pk_4,...,pk_6}(1;r_4,...,r_6)$

P₄ with input x₄ = 0 erases, removes its key and rerandomizes

 $E_{pk_5,pk_6}(0;r_5,r_6)$

 $E_{pk_5,pk_6}(1;r_5,r_6)$

Example

A corrupted P₅ colluding with a corrupted server know that the first 4 parties were divided evenly, but nothing else

 $E_{pk_5,pk_6}(0;r_5,r_6)$

 $E_{pk_5,pk_6}(1;r_5,r_6)$

Security

- If server is honest, no one learns anything
- If server is corrupt, it cannot decrypt anything which is still encrypted under an honest party's public-key
 - Security level achieved when last few parties are corrupted is the same as if they just didn't participate to start with
- Rerandomization ensures that the row removed is not learned

Concrete Cost

Each party computes on average about ³ⁿ/₂ exponentiations

 We can do 1000 – 2000 exponentiations per second, making this protocol practical even for thousands of users (unless many come at the same time)

For <u>malicious adversaries</u>

- Need to add digital signatures and ZK proofs (these are just Diffie-Hellman tuple proofs)
- The concrete cost is less than $8n^2$ (with Fiat–Shamir)
- This is still practical for not too many parties
 - About 10 seconds for 40 parties (tenure example)

More Results

Highly efficient optimally private protocols for:

- Symmetric functions over \mathbb{Z}_c
- Sum function over large domain
- Selection functions

A general feasibility result:

- Any decomposition f₁, ..., f_n can be securely computed, under the DDH assumption (and NIZK for malicious)
- This can be used **for any decomposition** (minimal or not)
 - The actual security derived depends on the decomposition
 - Minimal is best; if not, then it depends on the application

Summary

 Fully interactive secure computation is a problem in practice

 A one-pass client/server protocol is essential for many applications, and is also interesting from a theoretical point of view

Our results

- Introduced the model and definitions
- Studied inherent limitations and use function decomposition to model this
- Constructed highly efficient and practical protocols exist for many natural problems in this setting
- Proved general feasibility for any decomposition