
Verifiable Delegation of Computation
over Large Datasets

Siavosh Benabbas
University of Toronto

Rosario Gennaro
IBM Research

Yevgeniy Vahlis
AT&T

Cloud Computing

Data D

Code F

F(D)

Cloud could be malicious or arbitrarily buggy (same as malicious)!

Y F(D)

Goal: efficiently verify that Y = F(D)

Cloud Computing

What is efficient verification?
Data D Algo F

Option 1: |F|,|D| are small
but F(D) takes many steps

Efficient verification can be linear in |F|, |D|

For example: D=N=pq, F tries all prime factors until p,q, are found

Cloud Computing

What is efficient verification?
Data D Algo F

Option 2: |D| is very big
F(D) is almost linear in |D|

Linear verification is not good enough
 Need to be (very) sublinear in |D|

Plenty of examples:
 Mining medical records
 Looking up records (PIR)
 Making predictions based on trained machine learning models
 …

[GGP, CKV, AIK]: Any function can be verifiably delegated in the
sense of option 2, assuming Fully Homomorphic Encryption

1. FHE will become practical any moment
 In the mean time – can we do VC without it?

2. [GGP,CKV,AIK] require that a malicious server
does not learn if it was successful in cheating –
a significant restriction in practice

Our Results

 A new verifiable delegation scheme for polynomials
 Delegate functions of the form p(x)=c0 + c1 x + c2 x2 + … + cd xd

 The degree d is arbitrarily large

 Extends* to multivariate polynomials

 Adaptive security – the server learns if he was successful

 Verifiable databases
 A client can outsource dictionaries (i1, v1)…(in, vn)

 Make verifiable retrieval queries “Get i”

 Update queries: “Add (i, v)”, “Remove (i)”, “Update (i, v)”

• In the line of work on auth. data
structures and memory checkers

• Constant communication overhead and
client work (strict poly-time)

• “Constant size” assumption

 Non-crypto applications
 Keyword search

 Proofs of retrievability

Prior Work

 Long series of works related to this problem
 Interactive Proofs (B,GMR)
 Probabilistically Checkable Proofs

 A computation can be associated with a (potentially very long) proof of correctness
 Verifying an NP problem can take time indep. of size of statement
 Verifier queries bits of the proof, assuming the Prover honestly provides them

 Efficient Arguments/CS Proofs [K,M]
 Prover commits to the PCP proof
 Verifier queries bits and verifies
 Statement must be short “F(x) = y”. Does not deal well with large data.

 All schemes above are interactive
 Except for Micali's CS proofs which are made non-interactive in the random oracle model

 Memory checkers
[BlumEvansGemmellKannanNaor91,Ajtai02,GemmellNaor03,NaorRothblum05,Dw
orkNaorRothVaik09,...]
 Different model: server can only retrieve array values. The goal is to minimize the number of

queries
 Our solution is not a good memory checker (because the server works hard), but is much

more efficient in communication and client work

VERIFIABLE DELEGATION OF
POLYMOMIALS

Delegating a polynomial

 What does it mean to delegate a polynomial?

p(x)=a0 + a1x+ … + adx
d

Public key

Short secret |SK| << d ̧

Delegating a polynomial

 What does it mean to delegate a polynomial?

Compiled
query

SK

Input x

Response Y
Certificate C

Goal: be convinced that Y=P(x), or output “reject”

Public key

We only want
verification

Our main tool

 Algebraic PRFs with “trapdoor” efficient algebraic operations

 A pseudorandom function F is a family of functions where
 FK() is indistinguishable from a random function R()

 Algebraic PRF: the range of FK() forms an abelian group
 F is not a homomorphism!

 But, given FK(x), FK(y), can compute FK(x)FK(y)

 A public generator g

 (This is trivial)

Trapdoor Efficiency

Given a range (0,…,n) and values (x,x2,...,xn) can compute:

using the algebraic property

Trapdoor efficiency: given (K,x) easy to compute Y
(sublinear in n)

More generally: other functions of FK(0),…,FK(n)

Back to VC
Given coefficients a0,…,ad

Want to delegate p(x) = a0 + a1x + … + adxd

Construction
 Choose random c, compute masking coefficients

 Upload
 and

 To answer query x the server computes:

and returns (C, P(x))

Secrecy of a0,…,ad can
be achieved
using(singly)

homomorphic
encryption

Verification

An honest server sends:

and Y = P(x)

Verifier checks:

Verifier’s key: PRF key K, masking coefficient c

Recall that the server is given

The server has (in the exponent) coefficients of

To cheat adversary has to find , W Y

If R was random,
this breaks a secure MAC

Efficiency

 If R was random the client would have to remember
r0 , … , rd

 Easy to solve using any PRF (in fact, we already did that)
Now the client only remembers the PRF key

 Even if a PRF is used, the verifier needs to check efficiently:

 Trapdoor efficiency allows exactly that!
 Given (K, x) can compute R(x) is time sublinear in d

How?

 From strong-DDH: is ind. from random

 The PRF is:

 Efficiency:

 Multivariate:
Generalizes Naor-Reingold

Need only one exponentiation because:

How?

 From DDH
 Local state size is log(d)

 We use the Naor-Reingold PRF

 Efficiency:

In the paper:
Polynomials with logarithmic
number of variables (tradeoff

degree/# variables)

To summarize…

 Based on DDH/Strong-DDH we obtian an adaptively secure
scheme for delegating high degree polynomials.

 Can be used for keyword search:
 To outsource a set of keywords {w1,…,wn} outsource the polynomial

p(x) = (x-w1) (x-w2)(x-wn)

 Proofs of retrievability
 Want to make sure that server keeps a large file F

 Break F into blocks F0,…,Fn

 Outsource the polynomial
P(x) = F0 + F1 x + … + Fn x

n

 Audit check: verifiably evaluate P(r) for random r

Open directions

 Adaptive security for general functions

 Other efficient constructions for restricted classes of functions

 Better support for multi-variate polynomials

Thank you!

Thank you!

VERIFIABLE DATABASES!

Verifiable databases?

Retrieve location i

Write to location j

Insert to location k

Delete from location l

Think: SVN with untrusted repository

Very abridged history

 Merkle trees
 Data is in stored as leaves of a tree

 Client keeps a hash of the root

 Queries/updates are relatively easy – log n operations each

 Insertion/deletion is not good – based on amortization
Too slow over a network for large storages

 Memory checkers
 Different model: server is a RAM

 Efficiency is counted in # of RAM queries

 We allow server to work hard

 Authenticated Data Structures
 Different model: trusted party has a large secret

Folklore solution without updates

 For every populated location i
 Give the server MAC(i, data[i])

 For all other locations j
 Upload a MAC of the shortest prefix w of j that does not extend to a

populated i

 But, hard to do updates – can’t revoke!
root

(i1,d1) (i2,d2)

?

?

Simple Construction

 Upload to authenticate (i,vi)
 This is a MAC

 Can update (insecurely):
 To change value to ui , send

 Now server can find

 Insertion is easy

 Efficient deletion not possible
 Server always has certificate for (i,vi)

 Can we fix it?
 Need to tie all the elements together without growing client state

Composite Order Bilinear Groups

Subgroup membership assumption:

G = G1 x G2 |G1|=p |G2|=q

Given g in G, g2 in G2 hard to distinguish:

(Random from G) ≈c (Random from G2)

Back to verifiable DB
 Instead of uploading

The client sends for a random wi

The key is a,b,K, and

 To update location i to value ui client sends
and updates w

 Proof of security: the update token is indistinguishable from

 . (Actually, there are CCA issues)

 The server now sends*

Back to verifiable DB

 But server can’t compute !

 All he has is

 Upload additional “hints”
h1 in G, h0 in G2

 To respond to query “i“ the server sends back:

 The client performs the check in the target group of the pairing

Open directions

 Adaptive security for general functions is still open

 Support higher degree polynomials

 Obtain constructions based on Lattice assumptions

 Make verifiable DB publicly checkable

 Extend VDB to support wider range of queries

Thank you!

