
LEFTOVER HASH LEMMA

REVISITED

Yevgeniy Dodis (New York University)

Joint work with Boaz Barak, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak,

Francois-Xavier Standaert and Yu Yu

2

Imperfect Random Sources

 Ideal randomness is crucial in many areas

 Especially cryptography (i.e., secret keys) [MP91,DOPS04,BD07]

 However, often deal with imperfect randomness

 physical sources, biometric data, partial knowledge about

secrets, extracting from group elements (DH key exchange),…

 Necessary assumption: must have (min-)entropy

 (Min-entropy) m-source: Pr[X=x] 2-m, for all x

 Can we extract (nearly) perfect randomness from such

realistic, imperfect sources?

(Seeded) Extractors

 Tool: Randomness Extractor [NZ96].

 Input: a weak secret X and a uniformly random seed S.

Output: extracted key R = Ext(X; S).

R is uniformly random, even conditioned on the seed S.

 (Ext(X; S), S) ≈ (Uniform, S)

 Many uses in complexity theory and cryptography.

 Well beyond key derivation (de-randomization, etc.)

Ext
secret: X

seed: S

extracted key:

 R

3

4

Parameters

 Min-entropy m.

 Output length v.

 Equivalent measure: Entropy Loss L = m - v.

 Error e (measures statistical distance from uniform).

 Defines security parameter k = log(1/e)

 Seed Length n.

 Optimal Parameters [Sip, RT, DO]:

 Seed length n = O(security parameter log(1/e))

 Entropy loss L = 2log(1/e)

 Can we match them efficiently?

Leftover Hash Lemma (LHL)

 Universal Hash Family H = { h: X ! {0,1}v }:

 x ≠ y, Prh[h(x) = h(y)] =
1

2v

 Leftover Hash Lemma [HILL].

Universal hash functions {h} yield good extractors:
 (h (X), h) ¼e (Uv , h)

 optimal entropy loss: L = 2 log(1/e)

 sub-optimal seed length: n ≥ |X|

 Pros: simple, very fast, nice algebraic properties

 Cons: large seed and entropy loss

6

Leftover Hash Lemma (LHL)

Part I: Improving the Entropy Loss

8

Is it Important?

 Yes! Many sources do not have “extra” 2log(1/e) bits

Biometrics, physical sources, DH keys of elliptic curves (EC)

DH: lower “start-up” min-entropy also improves efficiency

 Heuristic extractors, analyzed in the random oracle

model, have “no entropy loss”

 End Result: practitioners prefer heuristic key derivation

to provable key derivation (see [DGH+,Kra])

 Goal: provably reduce 2 log(1/e) entropy loss of LHL

closer to “no entropy loss” of heuristic extractors

9

Is not 2log(1/e) entropy loss optimal?

 Yes, if must protect against all distinguishers D

 Cryptographic Setting: restricted distinguishers D

D = combination of attacker A and challenger C

D outputs 1 A won the game against C

 Case Study: key derivation for signature/MAC

Assume: Pr[A forges sig with random key] ≤ e(= negl)

Hope: Pr[A forges sig with extracted key] ≤ e’ (≈ e)

Key Insight: only care about distinguishers which almost

never succeed (on uniform keys) in the first place!

Better entropy loss might be possible!

10

Improved Entropy Loss for Key Derivation

 Setting: application P needs a v–bit secret key R

 Ideal Model: R Uv is uniform

Real Model: R Ext(X; S), where H∞(X) = v + L

 Assumption: P is e–secure in the ideal model

 Conclusion: P is e’–secure in the real model

 Standard LHL: if Ext is universal hash function, then

 e’ ≤ e + 2−L

 Our Result: For a “wide range” of applications P

 e’ ≤ e + e2−L

11

Improved Entropy Loss for Key Derivation

 Setting: application P needs a v–bit secret key R

 Ideal Model: R Uv is uniform

Real Model: R Ext(X; S), where H∞(X) = v + L

 Assumption: P is e–secure in the ideal model

 Conclusion: P is e’–secure in the real model

 Standard LHL: if Ext is universal hash function, then

 e’ ≤ e + 2−L

 Our Result: For a “wide range” of applications P

 e’ ≤ e + e2−L

Moral:

Might extract more if know

why you are extracting

12

Comparison

 Standard LHL: e’ ≤ e + 2−L

Must have L ≥ 2log(1/e) for e’ = 2e

Not meaningful for L ≤ 0, irrespective of e

 RO Heuristic: e’ ≤ e + e2−L

Suffices to have L ≥ 0 (no entropy loss) for e’ = 2e

Meaningful for L ≤ 0, “borrow” security from application

 Our Result: e’ ≤ e + e2−L

 “Halfway in between” standard LHL and RO

Suffices to have L ≥ log(1/e) for e’ = 2e

 Like RO, meaningful for L ≤ 0 (e.g. get e’= e when L=0)

13

Which Applications?

 All “unpredictability” applications

MAC, signature, one-way-function, ID scheme, …

 Prominent “indistinguishability” applications

 (stateless) CPA/CCA secure encryption, weak PRFs

But not PRFs, PRPs, stream ciphers, one-time pad

Note: OK to derive AES key for CPA encryption/MAC !

 Observation: composing with a weak PRF, can

include any (computationally-secure) application !

 E.g., PRFs/PRPs/stream ciphers, but not one-time pad

Cost: one wPRF call + wPRF input now part of the seed

Part II: Improving the Seed Length

Expand-then-Extract

 Recall, best n = O(sec. param. k)
But LHL needs n ≥ |X|

 Idea: use pseudorandom generator (PRG) G to

expand the seed from k bits to n = |X| bits:

 Ext’(X; s) = Ext(X; G(s))

Friendly to “streaming” sources

Can result in very fast implementations

 Hope: extracted bits are pseudorandom

 Is this idea sound?

20

21

Soundness of Expand-then-Extract

 Trivial: (Ext(X; G(S)), G(S)) ≈c (Uv, G(S))

Otherwise distinguish G(Uk) from Un

 Problem: need (Ext(X; G(S)), S) ≈c (Uv, S) (*)

 Theorem 1: Under DDH assumption, there exists a

PRG G and a universal hash function Ext (thus,

extractor, by LHL) s.t. can break (*) efficiently with

advantage ≈ 1 on any source X

 Thus, expand-then-extract might be insecure

23

OK to Extract Small Number of Bits!

 Theorem 2: Extract-then-expand is secure when number

of extracted bits v < “log(PRG security)”

 Note 1: PRG should be secure against O(exp(v)
e
) size circuits

 Note 2: extracted bits are still statistically random !

 Note 3: same min-entropy m, error drops to e

 Corollary: always safe to extract v = O(log k) bits,

sometimes might be safe to extract v = (k) bits

 Seed Length n ? At best, n = O(v + log(1/e)), same as

“almost universal” hash functions

26

Expand-then-Extract Secure in Minicrypt

 Counter-example used DDH – “public-key gadget”

 Minicrypt: one of Impagliazzo’s worlds, where

PRGs exist but no public-key encryption (PKE)

 Theorem 3: Extract-then-expand is secure in

Minicrypt

 True for any number of extracted bits, but “settle” for

efficiently samplable sources and pseudorandom bits

Similar in spirit to [HN, Pie, Dzi, DI, PS], but simpler!

27

Expand-then-Extract Secure in Minicrypt

 Theorem 3: if X is efficiently samplable, G is a PRG

and D efficiently distinguishes (Ext(X; G(S)), S) from

(U, S), then PKE exist

 Secret Key = S, Public Key = G(S)

 Encryption EncPK(b): send ciphertext R, where

 if b = 0, sample X and set R Ext(X; G(S))

 if b = 1, set R U

 Decryption DecSK(R): use D(R, S) to recover b

 Semantic security follows from PRG security:

 (Ext(X; G(S)), G(S)) ≈c (U, G(S))

Interpretation

29

Interpretation

 Corollary: Let G be a PRG.
Assume there exists no PKE with sk = S, pk = G(S),
pseudorandom ciphertexts and ≈ same security as G.
Then expand-then-extract is secure with G.

 “Practical” PRGs (e.g. AES) unlikely to yield such a PKE

No black-box construction known (even with powerful
“cryptomania” assumptions, like NIZK, IBE, FHE, etc.)

Possible that no PKE is as secure as AES !

Would be a major breakthrough with, say, AES

 Moral: formal evidence that expand-then-extract might
be “secure in practice” (with “actually used” ciphers)

Summary

 Can improve large entropy loss and seed length of LHL

 Entropy loss: for a wide range of applications reduce

entropy loss from 2log(1/e) to log(1/e)

Directly includes all authentication and some privacy

applications (including CPA encryption, weak PRFs)

Using wPRFs, computational extractor for all applications!

 Seed length: expand-then-extract approach

Not sound in general…

 Sound for extracting small # of bits

 Sound for “practical” PRGs (which do not “imply” PKE)

Available at http://eprint.iacr.org/2011/088

