Short and Stateless Signatures from the RSA Assumption

Susan Hohenberger

Brent Waters

Signatures Today

Schemes mostly fall into one of two classes:

Tree-Based Signatures

- -- [GMR85, G86, M89, DN89, BM90, NY94, R90, CD95, CD96, ...]
- -- tradeoff in size of signature and public key

"Hash-and-Sign" Signatures

- -- [RSA78, E84, S91, O92, BR93, PS96, GHR99, CS00, CL01, BLS04, BB04, CL04, W05, GJKW07, GPV08, HW09α, ...]
- -- short signatures and short public keys
- -- what practitioners expect

Focus on "Hash-and-Sign"

Again, most things fall into three classes:

Random Oracle Model

- -- RSA [RSA78]
- -- Discrete logarithm [E84,S91]
- -- Lattices [GPV08]

Strong Assumptions

- -- Strong RSA [GHR99, CS00]
- -- q-Strong Diffie-Hellman [BB04]
- -- LRSW [CL04]
- -- Exponential hardness [MRV99]

Stateful

-- RSA, Computational Diffie-Hellman [HW09a]

Exception?

Waters '05 sigs from CDH. They are short, but PK needs O(k) elements for sec. parameter k.

Our Main Result

Immediate: a digital signature scheme:

- -- under the RSA assumption
- -- standard model
- -- stateless
- -- short signatures (1 element, 1 integer)
- -- short public keys (modulus, 1 element, hash parameters)

Longer-term: a technique for:

- -- designing short, standard model signatures
- -- non-generic path from selective to full security

Goldwasser-Micali-Rivest Definition

Negligible probability that Verify(PK, m^* , s^*)=1 and m^* is new.

Goldwasser-Micali-Rivest Definition

Proofs are tricky. How to answer all queries, except m*?

Negligible probability that $Verify(PK, m^*, s^*)=1$ and m^* is new.

Theorem [GHR99,ST01]: Full Signatures <= Chameleon Hash + Weak Signatures.

```
Public Key: N, h, H: \{0,1\}^* \rightarrow \text{primes}.
```

```
Sign: s := h^{1/H(m)} \mod N.
```

```
Verify: Accept iff h = s^{H(m)} \mod N.
```

Public Key: N, h, $H: \{0,1\}^* \rightarrow primes$.

Sign: $s := h^{1/H(m)} \mod N$.

Verify: Accept iff $h = s^{H(m)} \mod N$.

Strong RSA: Given (N,y), find any (x,e) s.t. e > 1 and $x^e = y \mod N$.

Public Key: N, h, H: {0,1}* -> primes.

Sign: $s := h^{1/H(m)} \mod N$.

Verify: Accept iff $h = s^{H(m)} \mod N$.

Strong RSA: Given (N,y), find any (x,e) s.t. e > 1 and $x^e = y \mod N$.

Proof sketch. Adversary gives m_1 , ..., m_q . Set $h := y^{e^1 e^2 ... eq} \mod N$, where $H(m_i) = e_i$.

To sign mi, leave ei out of product.

On forgery, $s^*e^* = h = y^{e^1 e^2 \dots eq}$, where $H(m^*) = e^*$. Use Shamir's trick to get $x \cdot s \cdot t \cdot x^{e^*} = y \mod N$.

Public Key: N, h, H: {0,1}* -> primes.

Sign: $s := h^{1/H(m)} \mod N$.

Verify: Accept iff $h = s^{H(m)} \mod N$.

Strong RSA: Given (N,y), find any (x,e) s.t. e > 1 and $y = x^e \mod N$.

No idea where to embed single e, so push issue to the assumption.

gives $m_1, ..., m_q$. ere $H(m_i) = e_i$.

 $e^{2...eq}$, where $H(m^*) = e^*$.

Use Shammer to get x s.t. $x^{e^*} = y \mod N$.


```
Public Key: N, h, H: \{0,1\}^* \rightarrow \text{primes}.
Sign: s := h^{1/H(m)} \mod N.
Verify: Accept iff h = s^{H(m)} \mod N.
```

RSA: Given (N,y,e*), find the x s.t. e >1 and y = x^{e^*} mod N.

```
Pr If we knew m*, gives m_1, ..., m_q.

we could program H ere H(m_i) = e_i.

with single RSA e*.

... what do we know

about m*??

Use Shammar To get x s.t. x^{e^x} = y mod N.
```


A New Technique 5 for Designing 5i

```
Sign
Signa
Signat
Signatu
Signatur
Signature
Signatures
```


Shortest unique prefix of $m^* = 101$.

Shortest unique prefix of $m^* = 101$.

IDEA: Guess this prefix (before seeing m*).
-- guess m; which m* follows longest: >= 1/q chance.

Shortest unique prefix of $m^* = 101$.

IDEA: Guess this prefix (before seeing m*).

- -- guess mi which m* follows longest: >= 1/q chance.
- -- guess first bit where m* differs: >= 1/n chance.

What to do with observation?

Shortest unique prefix of m* = 101

- 1. Design signature using all prefixes of message.
- 2. Guess unique prefix of m* to embed challenge.

RSA Construction

```
Public Key: N, h, and H: \{0,1\}^* \rightarrow \text{primes}.
```

Sign: Let Mi := first i bits of M.

```
s := h^{1/e1} e^{2...en} \mod N, where e_i := H(M^i).
```

Verify: Accept iff $h = s^{e1} e^{2...en} \mod N$, where $e_i := H(M^i)$.

GHR: $s := h^{1/H(M)} \mod N$

RSA Construction

```
Public Key: N, h, and H: \{0,1\}^* \rightarrow \text{primes}.
```

Sign: Let $M^i := first i bits of M$.

 $s := h^{1/e^1 e^2 \dots e^n} \mod N$, where $e_i := H(M^i)$.

Verify: Accept iff $h = s^{e^1 e^2 ... e^n} \mod N$, where $e_i := H(M^i)$.

RSA: Given (N,y,e), find the \times s.t. e >1 and $y = \times^e$ mod N.

RSA Construction

Public Key: N, h, and H: $\{0,1\}^* \rightarrow \text{primes}$.

Sign: Let $M^i := first i bits of M$.

 $s := h^{1/e^1 e^2 ... e^n} \mod N$, where $e_i := H(M^i)$.

Verify: Accept iff $h = s^{e_1 e_2 ... e_n} \mod N$, where $e_i := H(M^i)$.

RSA: Given (N,y,e), find the \times s.t. e >1 and $y = \times^e$ mod N.

<u>Proof sketch</u>. Adversary gives $M_1, ..., M_q$.

- 1. Guess w* as shortest unique prefix of M*.
- 2. Choose H so that $H(w^*) = e$.
- 3. h := $y^{\text{(product of hash of all prefixes of } M_1,...,M_q)}$.
- 4. Sign for $M_1, ..., M_q$ by omit from product.
- 5. Extract x from M* forgery by Shamir's Trick.

Performance

Public Key: O(1) elements (N, h, hash descriptions)

Signature: 1 element in Z_N^* , 1 integer

Signing: 1 exp. E(primality tests) = nk.

Verification: n exp. E(primality tests) = nk.

n = length of message, k = security parameter

Performance

Public Key: O(1) elements (N, h, hash descriptions)

Signature: 1 element in Z_N^* , 1 integer

Signing: 1 exp. E(primality tests) = nk.

Verification: n exp. E(primality tests) = nk.

n = length of message, k = security parameter

- v bit chunk => n/v primes, but security loss of $1/(2^{v}-1)$.
- 2. hash to smaller primes
 - good idea, slightly changes the RSA assumption.
- 3. more in paper....

Theorem [GHR99,ST01]: Full Signatures <= Chameleon Hash + Weak Signatures.

exist under

- -- factoring
- -- RSA
- -- discrete log

[HW09b]: a non-generic technique for selective to weak security.

We give a new proof for Waters signatures under CDH.

We give a new proof for Waters signatures under CDH.

Selectively-secure IBE from Lattices.

Pairing world

Lattice world $[CHK'03] \longrightarrow [AB'09][CHK'09][P'09]$ bit by bit $[BB'04] \longrightarrow [BB'09]$ all at once

n

We give a new proof for Waters signatures under CDH.

Selectively-secure IBE from Lattices.

 $\begin{array}{ccc} \underline{Pairing \ world} & \underline{Lattice \ world} & \underline{ID \ processing} \\ & [CHK'03] \longrightarrow [AB'09] [CHK'09] [P'09] & \text{bit by bit} \\ & \downarrow & \downarrow & \\ & [BB'04] \longrightarrow [BB'09] & \text{all at once} \\ \end{array}$

Admits selectively-secure signatures [Naor].

We give a new proof for Waters signatures under CDH.

Selectively-secure IBE from Lattices.

Admits selectively-secure signatures [Naor].

Apply prefix technique to get full signatures!

[CHK'03] - Canetti, Halevi, Katz, [BB'04] - Boneh, Boyen, [AB'09] - Agrawal, Boyen [CHK'09] - Cash, Hofheinz, Kiltz, [P'09] - Peikert, [BB'09] - Boneh, Boyen

Open Directions

- 1. Better performance under RSA.
- 2. General selective to full security technique.
- 3. Short, standard model signatures from
 - -- discrete logarithm
 - -- CDH without bilinear groups
- 4. Standard model/assumptions for:
 - -- anonymous credentials
 - -- electronic cash
 - -- aggregate signatures
 - -- etc.

