The group of signed quadratic residues and applications <u>Dennis Hofheinz (CWI)</u> Eike Kiltz (CWI)

Quadratic residues

• $QR_N := \{ x \in Z_N^* \mid \exists y \in Z_N^* : x = y^2 \mod N \}$

Extremely useful for cryptography:

– Deciding membership in QR_N supposedly hard

Goldwasser-Micali, (Benaloh/Naccache-Stern)/...

Computing witness for membership (i.e., square root) equivalent to factoring N

Rabin/Blum-Blum-Shub/Blum-Goldwasser/...

Quadratic residues

- But: Membership in QR_N can be problematic
 - Example: PKE with ciphertexts in QR_N
 - Problem: decryption cannot distinguish QR_N -ciphertexts from $(Z_N^* QR_N)$ -ciphertexts
 - Decryption simulation becomes harder (what if Dec(-C*) is requested?)
- Ad-hoc solution: use homomorphic properties and square every incoming group element

Signed quadratic residues

- More elegant: use signed quadratic residues $QR_N^+ := \{ |x| \mid x \in QR_N \}$
- Membership problem in QR⁺_N easy (Blum N)

- $QR_N^+ = J_N^+ = \{ |x| | Jacobi symbol (x/N)=1 \}$

• Map f: $J_N \rightarrow QR_N$, $f(x)=x^2 \mod N$ has kernel ± 1

- Finding square roots still as hard as factoring
- Gap group!
- Considered by [FS2000], but not explored

Our results

- Consider QR_N^+ for Hybrid ElGamal (DHIES)
- Results:
 - RO model: DHIES is IND-CCA under factoring
 - Difficulty: reject inconsistent ciphertexts in sim.
 - Idea: show Strong Diffie-Hellman holds in QR_N^+
 - Standard model: DHIES is IND-CCA under higher residuosity assumption
 - Difficulty: reject inconsistent ciphertexts in sim.
 - Idea: use entropic hash proof systems
- Note: one scheme, two models, two results!

Hybrid ElGamal (DHIES)

• Key generation:

 $pk = (G, g, X=g^x, H)$ sk=(G, x, H)

Encryption ((E,D) denotes IND-CCA SKE):

 $\mathsf{Enc}_{\mu}(M) = (Y = g^{y}, S = \mathsf{E}_{\kappa}(M)) \text{ for } K = H(Y, X^{y})$

• Decryption: $Dec_{s_k}(Y,S)$ computes $K=H(Y,Y^x)$ decrypts $M=D_{\kappa}(S)$

Our results

- Consider QR_N^+ for Hybrid ElGamal (DHIES)
- Results:
 - RO model: DHIES is IND-CCA under factoring
 - Difficulty: reject inconsistent ciphertexts in sim.
 - Idea: show Strong Diffie-Hellman holds in QR_{N}^{+}
 - Standard model: DHIES is IND-CCA under higher residuosity assumption
 - Difficulty: reject inconsistent ciphertexts in sim.
 - Idea: use entropic hash proof systems
- Note: one scheme, two models, two results!

DHIES in the RO model

- [ABR01,CS03]: DHIES IND-CCA under SDH
 - Idea: RO statistically separates challenge key
 - Sim. must connect H-queries and keys (SDH)
- Strong Diffie-Hellman (SDH) problem:
 CDH: given g, X=g^x, Y=g^y, compute g^{xy}
 SDH: like CDH, but with access to DH_x(·):
 DH_y(Y*,Z*)=1 iff Z*=(Y*)^x

DHIES in the RO model

• [S85]: CDH in QR_N is as hard as factoring

- Idea: turn CDH adversary into root extractor given square $h \in QR_N$, set up:

$$g:=h^{2}, \qquad X:=hg^{a} \qquad Y:=hg^{b}$$

SO
$$g^{xy} = g^{(a+1/2)(b+1/2)} = g^{ab+(a+b)/2+1/4} = h^{2ab+a+b}h^{1/2}$$

No obvious way to simulate DH-oracle (SDH)
Reason: queries may be in $Z_N^* QR_N$

DHIES in the RO model

• Our simulation: given square $h \in QR_N^+$, set up

$$g:=h^2$$
, $X:=hg^a$ $Y:=hg^b$

• Given a DH_x query (Y*,Z*), need to test for $Z^* = (Y^*)^x$ $\Leftrightarrow \qquad Z^* = (Y^*)^{a+1/2}$ $\Leftrightarrow \qquad (Z^*)^2 = (Y^*)^{2a+1}$ (all operations in QR_M^+)

Our results

- Consider QR_N^+ for Hybrid ElGamal (DHIES)
- Results:
 - RO model: DHIES is IND-CCA under factoring
 - Difficulty: reject inconsistent ciphertexts in sim.
 - Idea: show Strong Diffie-Hellman holds in QR_N^+
 - Standard model: DHIES is IND-CCA under higher residuosity assumption
 - Difficulty: reject inconsistent ciphertexts in sim.
 - Idea: use entropic hash proof systems
- Note: one scheme, two models, two results!

DHIES in the standard model

- Recall $pk = (G, g, X = g^x, H)$, sk = (G, x, H)
- Idea 1: replace g in proof with subgroup gen.
 - Consequence: *pk* does not determine *x*
- Idea 2: implement H as UHF
 - Consequence: decryption K=H(Y, Y^x) extracts
 - Key K looks uniform if $Y \notin \langle g \rangle$ (so $Y^{x} \notin \langle g \rangle$)
- KEM part is entropic HPS (hence IND-CCA)!

Conclusion

Signed quadratic residues useful (gap!) group

- Simplifies existing proofs ([L02,CS03,HK09])...
- ...and gives new handles (Hybrid ElGamal)