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Learning Noisy Linear Functions
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• Extension to larger moduli: Learning-with-Errors (LWE) [Reg05] : 

- Zq where q(n)=poly(n) is typically prime 

- Gaussian noise w/mean 0 and std ≈ sqrt(q)

-(q-1)/2 (q-1)/20

Learning Parity with Noise (LPN)



• Assumption: LWE/LPN is computationally hard for all m=poly(n)

• Well studied in Coding Theory/Learning Theory/ Crypto [GKL93,BFKL93, 

Chab94,Kearns98,BKW00,HB01,JW05,Lyu05,FGKP06,KS06,PW08,GPV08,PVW08…]

• Pros:

- Reduction from worst-case Lattice problems [Reg05,Peik09]

- Hardness of search problem 

- So far resists sub-exp & quantum attacks 
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• Problem has simple algebraic structure: “almost linear” function

- exploited by [BFKL94, AIK07, D-TK-L09]

• Computable by simple (bit) operations (low hardware complexity)

- exploited by [HB01,AIK04,JW05] 

• Message of this talk: Very useful combination

Why LWE/LPN ?
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• Fast circular secure encryption schemes

- Symmetric encryption from LPN

- Public-key encryption from LWE

Main Results

• Fast pseudorandom objects from LPN

- Pseudorandom generator G:{0,1}n→{0,1}2n in quasi-linear time

- Oblivious weak randomized pseudorandom function 

This talk:



• Security: Even if Adv gets information cannot break scheme.

- CPA [GM82]:given oracle to Ekey() can’t distinguish Ek(m1) from Ek(m2)

• What if Adv sees Ek(msg) where msg depends on the key (KDM attack)? 

-E.g., Ekey(key) or Ekey(f(key)) or Ek1(k2) and Ek2(k1) 

Encryption Scheme
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F-KDM Security [BlackRogawayShrimpton02] : Adv gets Ek(f(k)) for f∈F

Circular security [CamenischLysyanskaya01] : Adv gets Ek1(k2), Ek2(k3)…, Eki(k1)

Can we achieve KDM/circular security? 

• many recent works [BRS02, HK07, BPS07, BHHO08, CCS08, BDU08, HU08,HH08]

• natural question also arises in:

- disk encryption or key-management systems

- anonymous credential systems via key cycles [CL01]

- axiomatic security [AdaoBanaHerzogScedrov05]

- Gentry’s fully homomorphic scheme [Gen09]

• non-trivial to achieve:

- some ciphers become insecure under KDM attacks (e.g.,AES in LRW mode)

- random oracle constructions are problematic [HofheintzUnruh08,HaleviKrawczyk07]

- can’t get KDM from trapdoor permutation in a black-box way [HaitnerHolenstein08]

KDM / circular security

[BHHO08]: Yes, we can !



• [BonehHaleviHamburgOstrovsky08] First circular public-key scheme from DDH

- Get “clique” security + KDM for affine functions

- But large computational/communication overhead

- t-bit message: Time: t exponentiations (compare to El-Gamal)

Communication: t group elements 

• Our schemes: circular encryption under LPN/LWE

- Get “clique” security + KDM for affine functions 

- Proofs of security follow the [BHHO08] approach

- Circular security comes “for free” from standard schemes

- Efficiency comparable to standard LWE/LPN schemes

- t-bit message: Time: symmetric case: t·polylog(t);

public-key: t2·polylog(t)

Communication: O(t) bits.

BHHO Scheme vs. Our Scheme



Symmetric Scheme from LPN



• Let G be a good linear error-correcting code with decoder for noise ε+0.1

Encs(mes; A, err)= (A, As+err + G·mes)

Decs(A,y)= decoder(y-As)

• Natural scheme originally from [GilbertRobshawSeurin08]

- independently discovered by [A08,DodisTauman-KalaiLovet09]

• Also obtain amortized version with quasilinear implementation (See paper)

Symmetric Scheme

A

s

err+A

,

+ G

key message

u

randomnessrandomness

Good Error-Correcting-Code



Encs(mes; A, err)= (A, As+err + G·mes )

Decs(A,y)= decoder(y-As)

Thm. Scheme is circular (clique) secure and KDM w/r to affine functions

Proof:

• Useful properties:

- Plaintext homomorphic: Given Es(u) and v can compute Es(u+v)

Clique Security

(A, As+err )+G⋅v+G⋅(u+v)+G⋅u



Encs(mes; A, err)= (A, As+err + G·mes )

Decs(A,y)= decoder(y-As)

Thm. Scheme is circular (clique) secure and KDM w/r to affine functions

Proof:

• Useful properties:

- Plaintext homomorphic: Given Es(u) and v can compute Es(v+u)

- Key homomorphic: Given Es(u) and r can compute Es+r(u)

Clique Security

(A,            +err+Gu )+A⋅rA⋅(s+r)A⋅s



Encs(mes; A, err)= (A, As+err + G·mes )

Decs(A,y)= decoder(y-As)

Thm. Scheme is circular (clique) secure and KDM w/r to affine functions

Proof:

• Useful properties:

- Plaintext homomorphic: Given Es(u) and v can compute Es(v+u)

- Key homomorphic: Given Es(u) and r can compute Es+r(u)

- Self referential: Given Es(0) can compute Es(s)

(A      ,   As        +err)

= (A’ ,               +err) 

= (A’ , A’s +err + Gs)

= Es(s) 

Clique Security

-G

As(A’+G)s



Encs(mes; A, err)= (A, As+err + G·mes )

Decs(A,y)= decoder(y-As)

Thm. Scheme is circular (clique) secure and KDM w/r to affine functions

Proof:

• Useful properties:

- Plaintext homomorphic: Given Es(u) and v can compute Es(v+u)

- Key homomorphic: Given Es(u) and r can compute Es+r(u)

- Self referential: Given Es(0) can compute Es(s)

• Suppose that Adv break clique security (can ask for ESi(Sk) for all 1 ≤i,k≤t)

• Construct B that breaks standard CPA security (w/r to single key S).

• B simulates Adv: choose t offsets  ∆1,…, ∆t and pretend that Si=S+∆i

- Simulate Esi(Sk): get Es(0) → Es(S) → Es+ ∆i(S) → Es+ ∆i(S+ ∆k)

Clique Security



Public-key Scheme from LWE



• Public-key: A∈Zq
n×m, b ∈ Zq

m

• Secret-key: s ∈Zq
n

• Encrypt z ∈Zp⊂Zq by (u∈Zq
n,c∈Zq) 

• To Decrypt (u,c): compute c-<s,u>=g⋅mes+err and decode

• CPA Security in [Regev05, GentryPeikertVaikuntanathan08]

• Want: Plaintext homomorphic, Self referential, Key homomorphic

Regev’s Scheme - [GPV-PVW08] variant

(u, <s,u>+err+g⋅(message))
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s
• Public-key: A∈Zq

n×m, b ∈ Zq
m

• Secret-key: s ∈Zq
n

• Encrypt z ∈Zp⊂Zq by (u∈Zq
n,c∈Zq) 

• Can we convert E(0) to E(s1) ?

• Can use prev ideas (up to some technicalities) but…

• Problem:  s1 may not be in Zp

• Sol: Choose s with entries in Zp by sampling from Gaussian around (0 ±p/2)

• Security: we show how to convert standard LWE to LWE with s←Noise

Self Reference

(u, <s,u>+err+g⋅(message))
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Hardness of LWE with s←Noise

s∈∈∈∈Zq
n

A s x+ = b

Convert standard LWE to LWE with s←Noise

1. Get (A,b) s.t A is invertible 

A b



Hardness of LWE with s←Noise

s∈∈∈∈Zq
n

A s x+ = b

Convert standard LWE to LWE with s←Noise

• If (α,β)←LWEs then (α’,β’) ←LWEx

Proof: β’= β+<α’,b>

= <α,s>+e + <α’,As>+<α’,x>

= <α,s>+e + <-A-1α,As>+<α’,x>

<α,s>+e

 α α α α ββββ

β+<α’,b>

 α α α α’ ββββ’

-A-1α

x∈∈∈∈Noise



Hardness of LWE with s←Noise

s∈∈∈∈Zq
n

A s x+ = b

Convert standard LWE to LWE with s←Noise

• If (α,β)←LWEs then (α’,β’) ←LWEx

• If (α,β) are uniform then (α’,β’) also uniform

• Hence distinguisher for LWEx yields a distinguisher for LWEs

<α,s>+e

 α α α α ββββ

β+<α’,b>

 α α α α’ ββββ’

-αA-1

x∈∈∈∈Noise



Hardness of LWE with s←Noise

s∈∈∈∈Zq
n

A s x+ = b

• Reduction generates invertible linear mapping fA,b:s → x

x∈∈∈∈Noise(A,b)



Hardness of LWE with s←Noise

s∈∈∈∈Zq
n

• Reduction generates invertible linear mapping fA,b:s → x

• Key Hom: get pk’s whose sk’s x1,..,xk satisfy known linear-relation

• Together with prev properties get circular (clique) security 

• Improve efficiency via amortized version of [PVW08]

x1∈∈∈∈Noise(A1,b1)

xk∈∈∈∈Noise(Ak,bk)

••••
••••
••••

••••
••••
••••



• LWE vs. LPN ?

- LWE follows from worst-case lattice assumptions [Regev05, Peikert09]

- LWE many important crypto applications [GPV08,PVW08,PW08,CPS09]

- LWE can be broken in “NP∩ co-NP” unknown for LPN

- LPN central in learning (“complete” for learning via Fourier) 
[FeldmanGopalanKhotPonnuswami06]

• Circular Security vs. Leakage Resistance ? 

- Current constructions coincident 

- LPN/Regev/BHHO constructions resist key-leakage 
[AkaviaGoldwasserVaikuntanathan09, DodisKalaiLovett09, NaorSegev09]

- common natural ancestor?

Open Questions



• Public-key: (A,b)∈Zq
n×m×Zq

m Secret-key: s ∈Zq
n

• Encrypt z ∈Zp⊂Zq by (u,v+f(z)) where f: Zp→Zq is linear ECC, i.e., f(z)=az

• To Decrypt (u,c): compute c-<s,u>=f(z)+<x,r> and decode

• Security [R05,GPV]: If b was truly random then (u,v) is random and get OTP

• Want: Plaintext homomorphic, Self referential, Key homomorphic

• Plaintext hom: let message space be subgroup of Zq by taking q=p2

Regev’s Scheme - [GPV-PVW08] variant
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Pseudorandom Generator (PRG)

Rand
Src.

G(s)

Uniform
Poly-time machine

random seed

s

Pseudorandom

or Random?

stretch

G

• Can be constructed from any one-way function [HILL90]

• Stretch of 1 bit ⇒ Stretch of polynomially many bits [BM-Y, GM84]



Pseudorandom generator G:{0,1}n→{0,1}2n

• At least  Ω(n) circuit size

• Can we get low overhead of O(n) or n ·polylog(n) ?

- natural question

- [IKOS08] PRG with low overhead ⇒ low-overhead cryptography 

e.g., PK-encryption in time O(|message|), for sufficiently large message.

Circuit Complexity of PRGs

nsparse-LPN (non-standard)[AIK06]

n2LPN[BFKL94, FS96]

LPN (standard)

Number Theoretic

1-bit PRG G’

Assumption

n· polylog(n)This work

More than n2
[Gen00,DRV02, 

DN02]

n·Time(G’)>n2[BM84, GM84]

Time (circuit size)Construction



Pseudorandom generator G:{0,1}n→{0,1}2n

• Can we get low overhead of O(n) or n ·polylog(n) ?

- natural question

- [IKOS08] PRG with low overhead ⇒ low-overhead cryptography 

e.g., PK-encryption in time O(|message|), for sufficiently large message.

Circuit Complexity of PRGs

nsparse-LPN (non-standard)[A-IshaiKushilevitz06]

n2LPN
[BlumFurstKearnsLipton94, 

FischerStern96]

LPN (standard)

Number Theoretic

1-bit PRG G’

Assumption

n· polylog(n)This work

More than n2
[Genarro00, 

DedicReyzinVadhan02, 

DamgardNielsen02]

n·Time(G’)>n2[BlumMicali84, 

GoldreichMicali84]

Time (circuit size)Construction



BFKL generator: G(A, s, r)= (A,As+ Err(r))  

• input: nm+n+mH2(ε) output: nm+m stretch: m(1-n/m - H2(ε))

• Efficiency: only bit operations !

• Bottleneck 1: at least Ω(mn) due to matrix-vector multiplication 

• Bottleneck 2: Sampling Err(r) (with low randomness complexity) takes time

[FischerStern96] : quadratic time on a RAM machine

The [BFKL] generator

(A,s,r) →→→→

BFKL PRG:

A

s

E(r)+A

n

m

,



BFKL generator: G(A, s, r)= (A,As+ Err(r))  

• Bottleneck 1: at least Ω(mn) due to matrix-vector multiplication 

• Sol: Amortization

• Use many different s’s with the same A 

• Preserves pseudorandomness since A is public

-Proof via Hybrid argument

•If matrices are very rectangular can multiply in quasi-linear time [Cop82] 

- E.g., t=n and m=n6

Solving 1: Amortization

A

S

E(r)+(A,S,r) A

n

m

,

→→→→

PRG: n t



Bottleneck 2: Sampling noise w/low randomness takes O(n2)

• Sol: [AIK06] Samp(r)= (err, leftover)

• PRG G(A,S,r)= (A, AS+err, leftover) 

• How to sample w/leftovers? 

- If ε=1/4 partition r to pairs and let erri
 = r2i-1⋅ r2i

- r has a lot of entropy given err, so can extract the leftover

- Can get linear time with leftover of linear length

• G has linear stretch and computable in quasi-linear time 

Solving 2: Sampling with leftovers

r Samp
err

leftover



• LWE vs. LPN ?

- LWE follows from worst-case lattice assumptions [Regev05, Peikert09]

- LWE many important crypto applications [GPV08,PVW08,PW08,CPS09]

- LWE can be broken in “NP∩ co-NP” unknown for LPN

- LPN central in learning (“complete” for learning via Fourier) [FGKP06]

• Circular Security vs. Leakage Resistance ? 

- Current constructions coincident 

- LPN/Regev/BHHO constructions resist key-leakage 
[AGV09,DKL09,NS09]

- common natural ancestor?

Open Questions



• DRLC is useful for private-key primitives that need

- fast hardware implementation

- special homomorphic properties  

• Find more crypto application for DRLC

- collision resistance hash-functions 

- public-key crypto [Alekh03] uses m=O(n), ε=sqrt(n)

Conclusion and Open Questions


