
Fast Cryptographic Primitives &

Circular-Secure Encryption

Based on Hard Learning Problems

Benny Applebaum, David Cash, Chris Peikert, Amit Sahai

Princeton University, Georgia Tech, SRI international, UCLA

CRYPTO 2009

Learning Noisy Linear Functions

Problem: find s

s∈∈∈∈Z2
n

=<ai,s>+noiseai bi
∈∈∈∈Z2

n

A

s

x

n

m +

εεεε

= b

iid noise vector of rate εεεε

e.g., εεεε =1/4

• Extension to larger moduli: Learning-with-Errors (LWE) [Reg05] :

- Zq where q(n)=poly(n) is typically prime

- Gaussian noise w/mean 0 and std ≈ sqrt(q)

-(q-1)/2 (q-1)/20

Learning Parity with Noise (LPN)

• Assumption: LWE/LPN is computationally hard for all m=poly(n)

• Well studied in Coding Theory/Learning Theory/ Crypto [GKL93,BFKL93,

Chab94,Kearns98,BKW00,HB01,JW05,Lyu05,FGKP06,KS06,PW08,GPV08,PVW08…]

• Pros:

- Reduction from worst-case Lattice problems [Reg05,Peik09]

- Hardness of search problem

- So far resists sub-exp & quantum attacks

Learning Noisy Linear Functions

A

s

x

n

m +

εεεε

= b

Problem: find s

• Problem has simple algebraic structure: “almost linear” function

- exploited by [BFKL94, AIK07, D-TK-L09]

• Computable by simple (bit) operations (low hardware complexity)

- exploited by [HB01,AIK04,JW05]

• Message of this talk: Very useful combination

Why LWE/LPN ?

rare

combination

A

s

x+

εεεε

= b

• Fast circular secure encryption schemes

- Symmetric encryption from LPN

- Public-key encryption from LWE

Main Results

• Fast pseudorandom objects from LPN

- Pseudorandom generator G:{0,1}n→{0,1}2n in quasi-linear time

- Oblivious weak randomized pseudorandom function

This talk:

• Security: Even if Adv gets information cannot break scheme.

- CPA [GM82]:given oracle to Ekey() can’t distinguish Ek(m1) from Ek(m2)

• What if Adv sees Ek(msg) where msg depends on the key (KDM attack)?

-E.g., Ekey(key) or Ekey(f(key)) or Ek1(k2) and Ek2(k1)

Encryption Scheme

message Enc ciphertext

key

randomness

Dec

key

message

F-KDM Security [BlackRogawayShrimpton02] : Adv gets Ek(f(k)) for f∈F

Circular security [CamenischLysyanskaya01] : Adv gets Ek1(k2), Ek2(k3)…, Eki(k1)

Can we achieve KDM/circular security?

• many recent works [BRS02, HK07, BPS07, BHHO08, CCS08, BDU08, HU08,HH08]

• natural question also arises in:

- disk encryption or key-management systems

- anonymous credential systems via key cycles [CL01]

- axiomatic security [AdaoBanaHerzogScedrov05]

- Gentry’s fully homomorphic scheme [Gen09]

• non-trivial to achieve:

- some ciphers become insecure under KDM attacks (e.g.,AES in LRW mode)

- random oracle constructions are problematic [HofheintzUnruh08,HaleviKrawczyk07]

- can’t get KDM from trapdoor permutation in a black-box way [HaitnerHolenstein08]

KDM / circular security

[BHHO08]: Yes, we can !

• [BonehHaleviHamburgOstrovsky08] First circular public-key scheme from DDH

- Get “clique” security + KDM for affine functions

- But large computational/communication overhead

- t-bit message: Time: t exponentiations (compare to El-Gamal)

Communication: t group elements

• Our schemes: circular encryption under LPN/LWE

- Get “clique” security + KDM for affine functions

- Proofs of security follow the [BHHO08] approach

- Circular security comes “for free” from standard schemes

- Efficiency comparable to standard LWE/LPN schemes

- t-bit message: Time: symmetric case: t·polylog(t);

public-key: t2·polylog(t)

Communication: O(t) bits.

BHHO Scheme vs. Our Scheme

Symmetric Scheme from LPN

• Let G be a good linear error-correcting code with decoder for noise ε+0.1

Encs(mes; A, err)= (A, As+err + G·mes)

Decs(A,y)= decoder(y-As)

• Natural scheme originally from [GilbertRobshawSeurin08]

- independently discovered by [A08,DodisTauman-KalaiLovet09]

• Also obtain amortized version with quasilinear implementation (See paper)

Symmetric Scheme

A

s

err+A

,

+ G

key message

u

randomnessrandomness

Good Error-Correcting-Code

Encs(mes; A, err)= (A, As+err + G·mes)

Decs(A,y)= decoder(y-As)

Thm. Scheme is circular (clique) secure and KDM w/r to affine functions

Proof:

• Useful properties:

- Plaintext homomorphic: Given Es(u) and v can compute Es(u+v)

Clique Security

(A, As+err)+G⋅v+G⋅(u+v)+G⋅u

Encs(mes; A, err)= (A, As+err + G·mes)

Decs(A,y)= decoder(y-As)

Thm. Scheme is circular (clique) secure and KDM w/r to affine functions

Proof:

• Useful properties:

- Plaintext homomorphic: Given Es(u) and v can compute Es(v+u)

- Key homomorphic: Given Es(u) and r can compute Es+r(u)

Clique Security

(A, +err+Gu)+A⋅rA⋅(s+r)A⋅s

Encs(mes; A, err)= (A, As+err + G·mes)

Decs(A,y)= decoder(y-As)

Thm. Scheme is circular (clique) secure and KDM w/r to affine functions

Proof:

• Useful properties:

- Plaintext homomorphic: Given Es(u) and v can compute Es(v+u)

- Key homomorphic: Given Es(u) and r can compute Es+r(u)

- Self referential: Given Es(0) can compute Es(s)

(A , As +err)

= (A’ , +err)

= (A’ , A’s +err + Gs)

= Es(s)

Clique Security

-G

As(A’+G)s

Encs(mes; A, err)= (A, As+err + G·mes)

Decs(A,y)= decoder(y-As)

Thm. Scheme is circular (clique) secure and KDM w/r to affine functions

Proof:

• Useful properties:

- Plaintext homomorphic: Given Es(u) and v can compute Es(v+u)

- Key homomorphic: Given Es(u) and r can compute Es+r(u)

- Self referential: Given Es(0) can compute Es(s)

• Suppose that Adv break clique security (can ask for ESi(Sk) for all 1 ≤i,k≤t)

• Construct B that breaks standard CPA security (w/r to single key S).

• B simulates Adv: choose t offsets ∆1,…, ∆t and pretend that Si=S+∆i

- Simulate Esi(Sk): get Es(0) → Es(S) → Es+ ∆i(S) → Es+ ∆i(S+ ∆k)

Clique Security

Public-key Scheme from LWE

• Public-key: A∈Zq
n×m, b ∈ Zq

m

• Secret-key: s ∈Zq
n

• Encrypt z ∈Zp⊂Zq by (u∈Zq
n,c∈Zq)

• To Decrypt (u,c): compute c-<s,u>=g⋅mes+err and decode

• CPA Security in [Regev05, GentryPeikertVaikuntanathan08]

• Want: Plaintext homomorphic, Self referential, Key homomorphic

Regev’s Scheme - [GPV-PVW08] variant

(u, <s,u>+err+g⋅(message))

A
s

x+
εεεε

= b

message Enc

public-key

randomness
random

vector
fixed linear ECC

distribution over low-weight

elements

• Public-key: A∈Zq
n×m, b ∈ Zq

m

• Secret-key: s ∈Zq
n

• Encrypt z ∈Zp⊂Zq by (u∈Zq
n,c∈Zq)

• To Decrypt (u,c): compute c-<s,u>=g⋅mes+err and decode

• CPA Security in [Regev05, GentryPeikertVaikuntanathan08]

• Want: Plaintext homomorphic, Self referential, Key homomorphic

Regev’s Scheme - [GPV-PVW08] variant

(u, <s,u>+err+g⋅(message))

A
s

x+
εεεε

= b

message Enc

public-key

randomness
random

vector
fixed linear ECC

distribution over low-weight

elements

s
• Public-key: A∈Zq

n×m, b ∈ Zq
m

• Secret-key: s ∈Zq
n

• Encrypt z ∈Zp⊂Zq by (u∈Zq
n,c∈Zq)

• Can we convert E(0) to E(s1) ?

• Can use prev ideas (up to some technicalities) but…

• Problem: s1 may not be in Zp

• Sol: Choose s with entries in Zp by sampling from Gaussian around (0 ±p/2)

• Security: we show how to convert standard LWE to LWE with s←Noise

Self Reference

(u, <s,u>+err+g⋅(message))

A
s

x+
εεεε

= b

message Enc

public-key

randomness

Hardness of LWE with s←Noise

s∈∈∈∈Zq
n

A s x+ = b

Convert standard LWE to LWE with s←Noise

1. Get (A,b) s.t A is invertible

A b

Hardness of LWE with s←Noise

s∈∈∈∈Zq
n

A s x+ = b

Convert standard LWE to LWE with s←Noise

• If (α,β)←LWEs then (α’,β’) ←LWEx

Proof: β’= β+<α’,b>

= <α,s>+e + <α’,As>+<α’,x>

= <α,s>+e + <-A-1α,As>+<α’,x>

<α,s>+e

 α α α α ββββ

β+<α’,b>

 α α α α’ ββββ’

-A-1α

x∈∈∈∈Noise

Hardness of LWE with s←Noise

s∈∈∈∈Zq
n

A s x+ = b

Convert standard LWE to LWE with s←Noise

• If (α,β)←LWEs then (α’,β’) ←LWEx

• If (α,β) are uniform then (α’,β’) also uniform

• Hence distinguisher for LWEx yields a distinguisher for LWEs

<α,s>+e

 α α α α ββββ

β+<α’,b>

 α α α α’ ββββ’

-αA-1

x∈∈∈∈Noise

Hardness of LWE with s←Noise

s∈∈∈∈Zq
n

A s x+ = b

• Reduction generates invertible linear mapping fA,b:s → x

x∈∈∈∈Noise(A,b)

Hardness of LWE with s←Noise

s∈∈∈∈Zq
n

• Reduction generates invertible linear mapping fA,b:s → x

• Key Hom: get pk’s whose sk’s x1,..,xk satisfy known linear-relation

• Together with prev properties get circular (clique) security

• Improve efficiency via amortized version of [PVW08]

x1∈∈∈∈Noise(A1,b1)

xk∈∈∈∈Noise(Ak,bk)

••••
••••
••••

••••
••••
••••

• LWE vs. LPN ?

- LWE follows from worst-case lattice assumptions [Regev05, Peikert09]

- LWE many important crypto applications [GPV08,PVW08,PW08,CPS09]

- LWE can be broken in “NP∩ co-NP” unknown for LPN

- LPN central in learning (“complete” for learning via Fourier)
[FeldmanGopalanKhotPonnuswami06]

• Circular Security vs. Leakage Resistance ?

- Current constructions coincident

- LPN/Regev/BHHO constructions resist key-leakage
[AkaviaGoldwasserVaikuntanathan09, DodisKalaiLovett09, NaorSegev09]

- common natural ancestor?

Open Questions

• Public-key: (A,b)∈Zq
n×m×Zq

m Secret-key: s ∈Zq
n

• Encrypt z ∈Zp⊂Zq by (u,v+f(z)) where f: Zp→Zq is linear ECC, i.e., f(z)=az

• To Decrypt (u,c): compute c-<s,u>=f(z)+<x,r> and decode

• Security [R05,GPV]: If b was truly random then (u,v) is random and get OTP

• Want: Plaintext homomorphic, Self referential, Key homomorphic

• Plaintext hom: let message space be subgroup of Zq by taking q=p2

Regev’s Scheme - [GPV-PVW08] variant

A
s

x+
εεεε

= b

A

b
r

δδδδ“parity-check” matrix

=
u

v

noise
v=<s,u>+<x,r>

+ f(z)

Pseudorandom Generator (PRG)

Rand
Src.

G(s)

Uniform
Poly-time machine

random seed

s

Pseudorandom

or Random?

stretch

G

• Can be constructed from any one-way function [HILL90]

• Stretch of 1 bit ⇒ Stretch of polynomially many bits [BM-Y, GM84]

Pseudorandom generator G:{0,1}n→{0,1}2n

• At least Ω(n) circuit size

• Can we get low overhead of O(n) or n ·polylog(n) ?

- natural question

- [IKOS08] PRG with low overhead ⇒ low-overhead cryptography

e.g., PK-encryption in time O(|message|), for sufficiently large message.

Circuit Complexity of PRGs

nsparse-LPN (non-standard)[AIK06]

n2LPN[BFKL94, FS96]

LPN (standard)

Number Theoretic

1-bit PRG G’

Assumption

n· polylog(n)This work

More than n2
[Gen00,DRV02,

DN02]

n·Time(G’)>n2[BM84, GM84]

Time (circuit size)Construction

Pseudorandom generator G:{0,1}n→{0,1}2n

• Can we get low overhead of O(n) or n ·polylog(n) ?

- natural question

- [IKOS08] PRG with low overhead ⇒ low-overhead cryptography

e.g., PK-encryption in time O(|message|), for sufficiently large message.

Circuit Complexity of PRGs

nsparse-LPN (non-standard)[A-IshaiKushilevitz06]

n2LPN
[BlumFurstKearnsLipton94,

FischerStern96]

LPN (standard)

Number Theoretic

1-bit PRG G’

Assumption

n· polylog(n)This work

More than n2
[Genarro00,

DedicReyzinVadhan02,

DamgardNielsen02]

n·Time(G’)>n2[BlumMicali84,

GoldreichMicali84]

Time (circuit size)Construction

BFKL generator: G(A, s, r)= (A,As+ Err(r))

• input: nm+n+mH2(ε) output: nm+m stretch: m(1-n/m - H2(ε))

• Efficiency: only bit operations !

• Bottleneck 1: at least Ω(mn) due to matrix-vector multiplication

• Bottleneck 2: Sampling Err(r) (with low randomness complexity) takes time

[FischerStern96] : quadratic time on a RAM machine

The [BFKL] generator

(A,s,r) →→→→

BFKL PRG:

A

s

E(r)+A

n

m

,

BFKL generator: G(A, s, r)= (A,As+ Err(r))

• Bottleneck 1: at least Ω(mn) due to matrix-vector multiplication

• Sol: Amortization

• Use many different s’s with the same A

• Preserves pseudorandomness since A is public

-Proof via Hybrid argument

•If matrices are very rectangular can multiply in quasi-linear time [Cop82]

- E.g., t=n and m=n6

Solving 1: Amortization

A

S

E(r)+(A,S,r) A

n

m

,

→→→→

PRG: n t

Bottleneck 2: Sampling noise w/low randomness takes O(n2)

• Sol: [AIK06] Samp(r)= (err, leftover)

• PRG G(A,S,r)= (A, AS+err, leftover)

• How to sample w/leftovers?

- If ε=1/4 partition r to pairs and let erri
 = r2i-1⋅ r2i

- r has a lot of entropy given err, so can extract the leftover

- Can get linear time with leftover of linear length

• G has linear stretch and computable in quasi-linear time

Solving 2: Sampling with leftovers

r Samp
err

leftover

• LWE vs. LPN ?

- LWE follows from worst-case lattice assumptions [Regev05, Peikert09]

- LWE many important crypto applications [GPV08,PVW08,PW08,CPS09]

- LWE can be broken in “NP∩ co-NP” unknown for LPN

- LPN central in learning (“complete” for learning via Fourier) [FGKP06]

• Circular Security vs. Leakage Resistance ?

- Current constructions coincident

- LPN/Regev/BHHO constructions resist key-leakage
[AGV09,DKL09,NS09]

- common natural ancestor?

Open Questions

• DRLC is useful for private-key primitives that need

- fast hardware implementation

- special homomorphic properties

• Find more crypto application for DRLC

- collision resistance hash-functions

- public-key crypto [Alekh03] uses m=O(n), ε=sqrt(n)

Conclusion and Open Questions

