Somewhat Non-Committing Encryption and Efficient Adaptively Secure Oblivious Transfer

Hong-Sheng Zhou

University of Connecticut

Joint work with

Juan Garay (AT&T) and Daniel Wichs (NYU)

CRYPTO 2009

Outline

- Background
- New Approach to Adaptive Security
- Application: Efficient and Adaptively Secure Oblivious Transfer

Our Mission: "Strong" Security

- Protocols that withstand wide variety of adversarial attacks
- The simulation paradigm [GMW'87]; arbitrary environments (Universal Composability [Canetti'01])
- Static vs. Adaptive security
 - Corruptions before computation starts vs. on-the-fly
 - Adaptive security models: Erasure vs. Non-Erasure

Our Mission: "Strong" Security

- Protocols that withstand wide variety of adversarial attacks
- The simulation paradigm [GMW'87]; arbitrary environments (Universal Composability [Canetti'01])
- Static vs. Adaptive security
 - Corruptions before computation starts vs. on-the-fly
 - Adaptive security models: Erasure vs. Non-Erasure

"Strong" Security: Partial History

- Feasibility results: Possible to design adaptively secure UC protocols for almost any task, assuming some trusted setup (e.g., CRS) [CLOS'02]
- Alternative efficient approaches by sacrificing some aspect of security [DN'03, KO'04, GMY'04, DI'05, JS'07, LP'07, Lindell'09, ...]
 - static UC security
 - adaptive UC security in the erasure model
 - adaptive UC security for honest majority
 - •

"Strong" Security: Partial History (cont'd)

 Adaptive UC security can be achieved efficiently, given an efficient adaptively secure string-OT protocol [IPS'08]

Our Results

- Efficient (constant-round, constant public-key op's per bit)
 adaptively UC secure bit- and string-OT protocols based on standard number-theoretic assumptions
- "Semi-Adaptive" security for two-party tasks
 - Not allowed: Both parties start out honest and then become corrupted
- Compilers: Semi-Adaptive security ⇒ Adaptive security
 - Secure channels ("fully equivocal;" non-committing encryption)
 - "Somewhat equivocal" channels
- Somewhat Non-Committing Encryption
 - Limited "equivocation," much more efficient!

Simulation Paradigm: UC Security

Definition: protocol π is a secure realization of task \mathcal{G} if: For every real-world adversary \mathcal{A} There exists an ideal-world adversary (simulator) \mathcal{S} Two worlds indistinguishable to all environments \mathcal{Z}

Why is adaptive security hard?

- No constant round adaptively secure general 2-PC or MPC protocol is known
- Adaptive security hard even for basic tasks like "secure channels"
 - ▶ Basic public-key encryption is not enough.

Why is adaptive security hard?

Why is adaptive security hard?

- No constant round adaptively secure general 2-PC or MPC protocol is known
- Adaptive security hard even for basic tasks like "secure channels"
 - Basic public-key encryption is not enough.
 - Extend encryption to Non-Committing Encryption [CFGN'96]
 - □ Simulator can run a "fake" encryption protocol to produce a ciphertext, and later explain the ciphertext as an encryption of some arbitrarily chosen plaintext
 - □ Done bit by bit [Beaver'97, DN'00]
 - \Box Very expensive for encrypting long message: O(1) public key operations per bit of message

Outline

- Background
- New Approach to Adaptive Security
- Application: Efficient and Adaptively Secure Oblivious Transfer

Previous Approach to Adaptive Security

[CLOS'02] for multi-party tasks [CDMW'09] for oblivious transfer

Use expensive generic zero-knowledge proofs or cut-and-choose techniques

New Approach to Adaptive Security

This work: two-party tasks

- 1, Introduce Semi-Adaptive Security
- 2, Develop a new compiler

Semi-Adaptive Security for 2-Party Tasks

Adversary

- Case I: If no party is corrupted at the very beginning, then the adversary can't corrupt any parties.
- Case 2: If there is a party corrupted at the very beginning, then the other party can be corrupted adaptively.
- Missing case: If no party is corrupted at the very beginning, either party (or both) can be corrupted during the protocol execution.

Simulator (Ideal World Adversary)

Trusted setup can be simulated **without** knowing which party is corrupted.

Take care of the corruptions in Cases I and 2.

Semi-Adaptive Security: Simulator

Semi-Adaptive Security: Simulator

Case 2: If there is a party corrupted at the beginning, then the other party can be corrupted adaptively. Bob **Bob** $\operatorname{protocol} \pi$

Compiler #1

- Conceptually simple: Use secure channels to protect communication transcripts between parties.
- ▶ **Theorem**: A semi-adaptively secure two-party protocol with communication protected by secure channels is fully adaptively secure.

ℓ -Equivocal Channel: Much Cheaper!

Compiler #2

- New compiler: Use ℓ -equivocal channels to protect protocol communication
- ▶ **Theorem**: A semi-adaptively secure protocol for function $f = X_I \times X_R \to Y_I \times Y_R$ with communication protected by ℓ -equivocal channels is fully adaptively secure. Here $\ell = |X_I||Y_I| + |X_R||Y_R|$
- Very efficient with small input/output sizes (e.g., bit-OT)
- ▶ Proof idea: Communication between honest parties can be explained as any one of the ℓ possible "protocol executions" that may have occurred.

Garay, Wichs and Zhou

ℓ-Equivocal Channel: Implementation

Outline

- Background
- New Approach to Adaptive Security
- Application: Efficient and Adaptively Secure Oblivious Transfer

1-out-of-2 Oblivious Transfer

[Rabin'81, EGL'85, Crepau'87]

Why OT?

- ► OT is the cornerstone of secure computation [Yao'82,GMW'87,...,CLOS'02,...]
- ▶ OT is complete [Kilian'88]
- Founding secure computation on OT efficiently [IPS'08]
- No efficient adaptively UC-secure OT until recently (comparison later)

PVW OT (Malicious+Static Adversary)

- Underlying building block: Dual Mode Encryption
- First truly efficient OT against malicious and static adversaries in the UC framework
- How to defend against adaptive adversaries?

Our Approach to Adaptively Secure OT

- Step I: Make PVW OT Semi-Adaptively Secure
 - * Extend Dual Mode Encryption to support adaptive security: Enhanced Dual Mode Encryption
 - * Change the CRS setup to be simulated without knowing which party is corrupted
 - Coin-tossing protocol

Use coin-tossing protocol to obtain the CRS for enhanced PVW

Such coin tossing protocol is based on a CRS which can be simulated without knowing which party is corrupted

Our Approach to Adaptively Secure OT

- Step I: Improve PVW OT to be Semi-Adaptively Secure
- ▶ Step 2:
 - * Use an equivocal channel to protect the communication. Equivocality parameter is $\ell=8$

Garay, Wichs and Zhou

Comparison with [CDMW'09]

Assumptions:

[CDMW'09]: general

Ours: DDH and DCR

Efficiency:

No. of public-key operations	bit-OT	string-OT (n bits)
[CDMW'09]	$O(\lambda^2)$	$O(\lambda^2 n)$
Ours: based on Secure Channel	$O(\lambda)$	$O(\lambda n)$
Ours: based on Equivocal Channel	O(1)	O(n)

Somewhat full version available at eprint.iacr.org/2008/534

Thanks!