The Round Complexity of Verifiable Secret Sharing Re-Visited

CRYPTO 2009

- Arpita Patra (IIT Madras)
- Ashish Choudhary (IIT Madras)
- Tal Rabin (IBM Research)
- C. Pandu Rangan (IIT Madras)

Verifiable Secret Sharing (VSS)

- Fundamental building block in secure distributed computing
- Two phase (sharing and reconstruction) protocol
 - Carried out among n parties of which at most t parties could be actively corrupted
 - Sharing phase : a secret s is shared among n parties
 - > Reconstruction phase : s is uniquely reconstructed

Round Complexity of VSS

- Studied in [GIKR01]
 - Assumed that protocols are error-free (perfect)
 - Lower bound : perfect VSS with 3 rounds of sharing is possible iff n ≥ 3t + 1 (1 round of reconstruction)

• Our Result:

- Existing lower bound can be circumvented by allowing a negligible error probability
- Statistical VSS with 2 rounds of sharing is possible iff $n \ge 3t + 1$

(2 rounds of reconstruction)

> 1 round of reconstruction if A_{t} is non-rushing

Verifiable Secret Sharing (VSS) [CGMA85]

- Extends Secret Sharing [Sha79, Bla79] to the case of active corruption
- n parties $P = \{P_1, ..., P_n\}$, dealer D (e.g., D = P_1)
- t corrupted parties (possibly including D) $\rightarrow A_{+}$
- Sharing Phase
 - D initially holds secret s and each party P_i finally holds some private information v_i --- share of s
 - A_{t} gets no information about s from the private information of corrupted parties
- Reconstruction Phase
 - Reconstruction function is applied to obtain

 $\mathbf{s} = \operatorname{Rec}(\mathbf{v}_1, \dots, \mathbf{v}_n)$

VSS Requirements

Secrecy

 If D is honest, then A_t has no information about secret s during the Sharing phase

Correctness

- If D is honest, then secret s will be correctly reconstructed during reconstruction phase

Strong Commitment

- If D is corrupted, then at the end of sharing phase, there exists a unique s*, such that s* will be reconstructed in reconstruction phase, irrespective of the behavior of corrupted parties

Types of VSS

- Perfect
 - Without any error

- Statistical
 - Negligible error probability of $\in = 2^{-\Omega(k)}$ in Correctness and Strong Commitment
 - No compromise in Secrecy

Communication Model and Definitions

- Synchronous, fully connected network of pair-wise secure channels + broadcast channel
- Rushing and adaptive active adversary A_t
- All computation and communication done over a finite field F = GF(2^k), where k is security parameter
- Without loss of generality, k = poly(n)
- Round complexity: Number of communication rounds in the Sharing phase [GIKR01, FGGPS06, KKK08]
- Efficiency: Total computation and communication is polynomial in n, k and size of the secret.

Our Results vs [GIKR01, FGGPS06]

Summary of existing results for perfect VSS

# Rounds	Characterization	Efficient?	Optimal Rounds?	Optimal Fault Tolerance?
1	$t = 1; n \ge 5$ No protocol for $t > 1$	Yes	Yes	Yes
2	n ≥ 4t + 1 , t ≥1	Yes	Yes	Yes
3	n ≥ 3t + 1 , t ≥1	Yes	Yes	Yes

Summary of our results for statistical VSS

# Rounds	Characterization	Efficient?	Optimal Rounds?	Optimal Fault Tolerance?
1	$t = 1; n \ge 4$ No protocol for $t > 1$	Yes	Yes	Yes
2	n ≥ 3t + 1 , t ≥ 1	Yes	Yes	Yes

- Conclusion: the existing lower bounds can be circumvented by allowing negligible error probability

Overview of Our 2 Round (3t + 1, t) Statistical VSS

- We follow the structure of the VSS protocols of [RB89, FGGPS06, KKK08]
 - > We first design a 2 round (3t + 1, t) statistical WSS
 - Our 2 round (3t + 1, t) statistical WSS is used as a black-box to design our 2 round (3t + 1, t) statistical VSS
- Novelty of our protocol : specific design of the WSS component and the way we use it for VSS

Weak Secret Sharing (WSS) [RB89]

- Used as a black-box in our VSS
- Secrecy and Correctness : same as in VSS
- Instead of Strong Commitment, satisfies Weak Commitment
 - Weak Commitment
 - If D is corrupted, then at the end of sharing phase, there exists a unique s*, such that during reconstruction phase either s* or NULL will be reconstructed
- Perfect WSS : no error
- Statistical WSS : negligible error of $2^{-\Omega(k)}$ in correctness and weak commitment

Idea of Our 2 Round (3t + 1, t) Statistical WSS

- D selects F(x, y), degree(x) = nk + 1, degree(y) = t, F(0, 0) = s

> Note the asymmetry in degree(x) and degree(y)

- Corrupted P_i revealing $f'_i(x) \neq f_i(x)$ will be caught by honest P_j with high probability

- $f'_i(x) \neq f_i(x)$ will match at one of the evaluation points of P_j with probability (nk + 1) / $|F| \approx 2^{-\Omega(k)}$

Adversary should not get additional information about s if D is honest

Idea of 2 Round Statistical WSS Contd.

D's distribution before Cut-and-choose:

- degree(x) = nk + 1
- $r_i(x)$: blinding polynomial
- Cut-and-choose:
- P_i BROADCASTS:
 - random $c_i \neq 0$
 - $g_i(x) = f_i(x) + c_i r_i(x)$

- k secret evaluation points
- f_i(x) and r_i(x) evaluated at these points

P_j BROADCASTS:

Ρ

- random k/2 evaluation points out of k
- evaluation of $f_i(x)$ and $r_i(x)$ at these k/2 points

Idea of Our 2 Round (3t + 1, t) Statistical WSS Contd...

- P_i Broadcasts:
 - random $c_i \neq 0$
 - $g_i(x) = f_i(x) + c_i r_i(x)$

P_i Broadcasts:

- random k/2 evaluation points out of k
- evaluation of $f_i(x)$ and $r_i(x)$ at these k/2 points
- If the k/2 values exposed by P_j satisfies $g_i(x)$, then except with probability 1/ $C(k, k/2) \approx 2^{-\Omega(k)}$, at least one of the remaining k/2 values of $f_i(x)$ possessed by P_j indeed lie on $f_i(x)$

 $> P_i$ randomly selects k/2 evaluations points for exposing

Idea of Our 2 Round (3t + 1, t) Statistical WSS Contd...

- P_i Broadcasts:
 - random $c_i \neq 0$
 - $g_i(x) = f_i(x) + c_i r_i(x)$

P_j Broadcasts:

 random k/2 evaluation points out of k

P_j

- evaluation of $f_i(x)$ and $r_i(x)$ at these k/2 points
- Adversary will have no information about $f_i(0) = F(0, i)$
 - > degree($f_i(x)$) = nk + 1 = (3t + 1)k + 1
 - Total number of points on f_i(x) known by adversary is
 [kt + (2t + 1) k/2] < (nk + 1)</p>

Statistical VSS, 2 Round Sharing, 2 Round Reconstruction, n = 3t + 1

Overall Idea

- Almost follows the same idea as [FGGPS06, KKK08]
 - D selects a symmetric bivariate polynomial F(x, y) of degree t in x, y with F(0, 0) = s and sends f_i(y) = F(i, y) to P_i
 - P_i executes sharing phase of 2 Round WSS to share a random degree-t polynomial g_i(y) --- WSS^Pi
 - Parties perform pair-wise consistency checking of their common values on F(x, y) using g_i(y) polynomials for masking
 - Though there is no third round to resolve conflict as in [FGGPS06, KKK08], our VSS achieve all the properties of statistic VSS.

Statistical VSS with Only 1 Round of Broadcast

- We can modify the VSS protocol so that it uses broadcast channel in ONLY ONE ROUND throughout the protocol
 - Minimum number of rounds in which broadcast channel is used --- [KKK08]
 - Idea: To modify the underlying WSS such that it does only private communication during reconstruction phase

Statistical VSS ---- 1 Round of Reconstruction

- If the adversary is non-rushing, then two rounds of reconstruction can be merged into single round
 - If the adversary is non-rushing, then the reconstruction of underlying WSS can be done in one round.
 - The reconstruction phase of the VSS is simply the execution of reconstruction phase of underlying WSS

Our Other Results (To Appear in Full Version of Paper)

- 3-Round efficient statistical WSS with n = 2t + 1
- 3-Round efficient statistical VSS with n = 3 and t = 1
- 4-Round in-efficient statistical VSS with n = 2t + 1
- 5-Round efficient statistical VSS with n = 2t + 1
- The current best statistical VSS with n = 2t + 1 is due to [CDD+99], which takes more than 5 rounds

Open Problems

 [GIKR01, FGGPS06, KKK08] --- perfect VSS with 3 Rounds of sharing and n = 3t + 1

Total = 4 rounds

This Paper ----

ana cross reconstruction with n = 3t + 1

- Open Problem I: what is the total round complexity
 (sharing + reconstruction) of VSS with
 n = 3t + 1
- This Paper --- error probability only in correctness and strong commitment
- Open Problem II: What is the effect on the round complexity of VSS considering error probability in secrecy as well

Thank You

References

[Shamir79]: A. Shamir. How to share a secret. *Communications of the ACM, 22(11):612-613, 1979.*

[CGMA85]: B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achieving simultaneity in the presence of faults. In Proc. of STOC 1985, pages 383-395, 1985.

[RB89]: T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In STOC, pages 73-85, 1989.

[GIKR01]: Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complexity of verifiable secret sharing and secure multicast. In STOC, pages 580-589, 2001.

[FGGPS06]: M. Fitzi, J. Garay, S. Gollakota, C. Pandu Rangan, and K. Srinathan. Round-optimal and efficient verifiable secret sharing. In Proc. of TCC 2006, pages 329-342, 2006.

References

[KKK08]: J. Katz, C. Koo, and R. Kumaresan. Improving the round complexity of vss in point-to-point networks. Cryptology ePrint Archive, Report 2007/358. Also in Proc. of ICALP 2008.

Another View of Computation in 2 Round WSS

- We can view the computation done by D during sharing phase as follows:
 - > D shares a degree-t polynomial g(y) using WSS
 - For this, D selects a random bi-variate F(x,y) as in WSS protocol, such that F(0, y) = g(y)
 - The polynomial g(y) is the degree-t polynomial used by D to share s = g(0) = F(0, 0)
 - The polynomial g(y) is not completely random, but preserves the secrecy of only its constant term

Sharing Phase, 2 Rounds

Round 1:

- D selects a symmetric bivariate polynomial F(x, y) of degree t in x, y with F(0, 0) = s and sends f_i(y) = F(i, y) to P_i
- P_i executes Round 1 of sharing phase of 2 Round WSS to share a random degree-t polynomial g_i(y) --- WSS^Pi

Round 2:

> Party P_i broadcasts

 $-h_i(y) = f_i(y) + g_i(y)$ $-a_{ji} = f_j(i) + g_j(i) = f_i(j) + g_j(i)$

The parties execute Round 2 of sharing phase of each WSS^P_i. Let WSS-SH_i denote the SH created in WSS^P_i.

Sharing Phase, 2 Rounds

- Local Computation (by Each Party) :
 - $> P_i$ accepted by P_j if $h_i(j) = a_{ij}$
 - Accept
 Protocol is similar to the 3 round perfect
 VSS of [FGGPR06, KKK08]
 Instead of doing verification point-wise, we do verification on polynomials

·,| ≤

- For P_i ∈ No third round to resolve conflicts
- > If final $|VSS-SH| \leq 2t$ then discard D

Properties of VSS-SH for Honest D

- Recall --- Local Computation (by Each Party) :
 - > P_i is said to be accepted by P_j if $h_i(j) = a_{ij}$
 - \succ Accept_i = set of all parties that accepted party P_i
 - > VSS-SH ← P_i if $|Accept_i| \ge 2t + 1$

For P_i ∈ VSS-SH, if |VSS-SH ∩ WSS-SH_i ∩ Accept_i| ≤ 2t then remove P_i from VSS-SH

- > If final $|VSS-SH| \leq 2t$ then discard D
- All honest parties will be present in VSS-SH and so an honest D will not be discarded during sharing phase
- > If a corrupted $P_i \in VSS-SH$ then $h_i(y) g_i(y) = f_i(y) = F(i, y)$

> There are at least (t + 1) honest parties in (WSS-SH_i \cap Accept_i) who uniquely define g_i(y) and f_i(y)

Properties of VSS-SH for Corrupted D

- Recall --- Local Computation (by Each Party) :
 - > P_i is said to be accepted by P_j if $h_i(j) = a_{ij}$
 - > Accept_i = set of all parties that accepted party P_i
 - > VSS-SH ← P_i if $|Accept_i| \ge 2t + 1$

For P_i ∈ VSS-SH, if |VSS-SH ∩ WSS-SH_i ∩ Accept_i| ≤ 2t then remove P_i from VSS-SH

- > If final $|VSS-SH| \leq 2t$ then discard D
- If honest parties in VSS-SH are not pair-wise consistent, then committed secret s* = NULL
- If honest parties in VSS-SH are pair-wise consistent and defines F^H(x, y), then committed secret is s* = F^H(0, 0)
 - > If corrupted $P_i \in VSS-SH$ then $h_i(y) g_i(y) = F^H(i, y)$ as there are (t + 1) honest parties in (WSS-SH_i ∩ Accept_i)

Reconstruction Phase, 2 Rounds

Round 1 and Round 2 :

> For each $P_i \in VSS-SH$, run reconstruction phase of WSS^{P_i}

- Local Computation (By Each Party) :
 - Initialize VS
 h_i(y) publicly known during sharing phase
 g_i(y) publicly reconstructed in WSS^P_i
 - > For $P_i \in VSS-REC$, define its share as $f_i(0) = h_i(0) g_i(0)$
 - If shares of the parties in VSS-REC interpolate a degree-t polynomial f(x), then output s = f(0). Else output NULL

Properties of VSS-REC

An honest P_i ∈ VSS-SH will be present in VSS-REC with high probability

> $WSS^{P_i} \neq NULL$ with very high probability

From the properties of VSS-SH and VSS-REC, the protocol satisfies (1 - ∈)-correctness and (1 - ∈)-strong commitment

Perfect Secrecy of the Protocol

If P_i is honest then h_i(y) = f_i(y) + g_i(y) does not reveal any information about f.(0)
 Follows from the secrecy property of 2
 ▶ Both f_i(y) at

> WSS^{P_i} does not reveal any information about $g_i(0)$

 Secrecy now follows from the properties of bivariate polynomial of degree-t in x and y

Statistical VSS --- 1 Round of Reconstruction

- If the adversary is non-rushing, then two rounds of reconstruction can be collapsed into single round
 - The reconstruction phase of the VSS is simply the execution of reconstruction phase of underlying WSS
 - If the adversary is non-rushing, then the reconstruction of underlying WSS and hence overall VSS can be done in one round

Statistical VSS with Only 1 Round of Broadcast

- We can modify the VSS protocol so that it uses broadcast channel in ONLY ONE ROUND throughout the protocol
 - Ide Minimum number of rounds in which broadcast is used [KKK08]
 [KKK08]
 [KKK08]
 (Minimum number of rounds)
 (KKK08)
 (KKK08)
 (Minimum number of rounds)
 (Minimum number of rounds)
 (KKK08)
 (Minimum number of rounds)
 (Minimum nu
 - For a corrupted P_i ∈ VSS-SH, then at the end of WSS^{P_i}, each honest party will locally output either g_i(y) or NULL, but nothing other than g_i(y)
- The resultant protocol will satisfy the properties of statistical VSS

Outline of the Talk

- Definition of VSS and WSS
- Existing Results and Outline of Our Results
- 2 Round (3t+1, t) Statistical WSS
- 2 Round (3t+1, t) Statistical VSS
- Open Problems

Verifiable Secret Sharing (VSS) [CGMA85]

- Extends secret sharing to the case of *active* corruptions
- A_t may actively corrupt at most t parties (possibly including the dealer D)
- Corrupted parties, incl. D may behave arbitrarily during the protocol

Statistical WSS and VSS

Statistical WSS

- Satisfies Correctness and Weak Commitment with probability (1 \in)
- \in = 2^{- $\Omega(k)$} and k = security parameter
- No compromise in Secrecy

Statistical VSS

- Satisfies Correctness and Strong Commitment with probability (1ϵ)
- \in = 2^{- $\Omega(k)$} and k = security parameter
- No compromise in Secrecy

Existing results on Perfect VSS

- Perfect VSS (without any error) is (efficiently) achievable iff n > 3t [BGW88 DDWY90]

al Fault

rance?

'es

'es

'es

'es

ing

- Optimal fault tolerance --- (n = 3t + 1)
- Optimal number of sharing rounds --- 3
- Optimal number of rounds in which broadcast channel is used --- 1

- 3 Rour Reconstruction phase of perfect VSS - [KKKO requires ONLY one round broadce

Our Results

- Statistical VSS possible iff n > 2t and broadcast channel is available [RB89] ---- nothing known about round complexity

- We the study of round complexity of statistical VSS

# Doundo	Characterization	Efficient?	Optimal	Optimal Fault
Rounas	Deconstructio	n nhaca	of perfect VSS	enerance ?
1	- RECONSTRUCTION	n phase a	r perfect voo	e e e e e e e e e e e e e e e e e e e
	requires ONL	y one rol	ind	
2				es e

- Our protocol requires TWO rounds of reconstruction
- If A_t is nor SINGLE rour Same as in [KKK08] tion can be done in

- Our protocols use broadcast channel in ONLY ONE round

Statistical WSS --- 1 Round of Reconstruction

- If the adversary is non-rushing the transmission to the second sec
 - Two rounds are required to force the rushing adversary to commit the f_i(x) polynomials of corrupted parties before seeing the evaluation points of honest parties
 - If the adversary is non-rushing, then the task of both the rounds can be merged into a single round

Statistical WSS with 1 Round of Broadcast

 We can modify the protocol so that it uses broadcast channel in ONLY ONE ROUND throughout the protocol

s* while some may output NULL

- Nowhere we need to reconstruct $f_i(x)$ polynomials.

Proof of the Properties of 2 Round WSS

- CORRECTNESS: (D is hone
 - All honest parties (at least 2t
 -- An honest D is not discarded

If D is honest then all honest parties will accept as well as reaccept each other

H -

- All honest parties will also be present in REC
- If D is honest then with very high probability no corrupted party will be present in REC
 - A corrupted P_i broadcasts f'_i(x) ≠ f_i(x) in Round 1 of reconstruction phase --- no information about evaluation points of honest parties
 - Honest parties reveal their secret evaluation points and values ONLY in Round 2 of reconstruction phase
 - > With high probability no honest party will re-accept P_i

Proof of the Properties of 2 Round WSS

- SECRECY: (D is honest)
 - Let P_1, \dots, P_t be under the control of A_t
 - During Round 1 of sharing phase, A₊ learns the following:
 - \succ Polynomials $f_1(x)$, ..., $f_t(x)$ and $r_1(x)$, ..., $r_t(x)$
 - \succ Kt points on $f_{t+1}(x)$, ..., $f_n(x)$ and $r_{t+1}(x)$, ..., $r_n(x)$
 - During Round 2 of sharing phase, A₊ learns the following: $\sum_{i=1}^{k} (2t+1) \text{ more points on } f_{t+1}(x) = f_{t}(x) \text{ and } r_{t}(x) = r_{t}(x)$ $A_{t} \text{ cannot interpolate back } F(x, y) = x$
 - and $r_{t+1}(x), ..., r_n(x)$
 - Degree of $f_{t+1}(x)$, ..., $f_n(x)$ is $(nk + 1) > kt + \frac{k}{2}$ (2t+1)
 - So $s = f_0(0)$ will be secure

Proof of the Properties of 2 Round WSS

• WEAK COMMITMENT: (D is Corrupted and $|SH| \ge 2t+1$)

- Committed s* is constant term of the degree-t polynomial interpolated by the shares of HONEST parties in SH
- s* = NULL if the shares of HONEST parties in SH does not interpolate a degree-t polynomial
- With very high probability, all HONEST parties in SH will be also present in REC
- In order that an HONEST P.
 From the properties of not present in REC, the foll
 - At lease one HONEST P_j a but did not re-accepted P_i

From the properties of cut-and-choose, this can happen with negligible probability

2t+1 parties accepted P_i during sharing phase, but only t parties re-accepted P_i during reconstruction phase

Idea of Our 2 Round (3t + 1, t) Statistical WSS Contd...

- P_i Broadcasts:
 - random $c_i \neq 0$
 - $g_i(x) = f_i(x) + c_i r_i(x)$

- P_j Broadcasts:
- random k/2 evaluation points out of k

P_j

- evaluation of $f_i(x)$ and $r_i(x)$ at these k/2 points
- Adversary will have no information about $f_i(0) = F(0, i)$
 - > degree($f_i(x)$) = nk + 1 = (3t + 1)k + 1
 - Total number of points on f_i(x) known by adversary is kt + (2t + 1) k/2

Sharing Phase : 2 Rounds

Round 1:

• D selects the following:

- F(x, y) --- degree of x = nk + 1, degree of y = t, F(0, 0) = s
- > $r_1(x)$, ..., $r_n(x)$ --- degree nk + 1, independent of F(x, y)
- > nk random, distinct, non-zero secret evaluation points denoted as $\alpha_{i,1}, ..., \alpha_{i,k} : 1 \le i \le n$

 D sends to para 	If D is honest, then $f_i(0)$'s of honest parties
≻ f _i (x) = F(x, i)	lie on degree-t polynomial g(y) = F(0,y). In the reconstruction phase, s will be
$\succ a_{j,i,l} = f_j(\alpha_{i,l})$	obtained by reconstructing g(y).
> ki(0) i th s	hare of s

Sharing Phase

Round 2:

- Party P_i broadcasts the following:
 - > A random, non-zero value c_i
 - > Polynomial $g_i(x) = f_i(x) + c_i r_i(x)$

Parties interact in zero knowledge fashion using cut-and-choose to find the consistency of $f_i(x)$ and evaluations of $f_i(x)$

> A random subset of k/2 secret evaluation points $\alpha_{i,|_1}, ..., \alpha_{i,|_{k/2}}$ and the values $a_j, ..., a_j, ..., a_j, ..., a_{j',i,|_{k/2}}$ and $b_j, ..., b_j, ..., b_{j',i,|_{k/2}}$

Local Computation by Each Party:

> P_j accepts P_i if $g_i(\alpha_{j,1}) = a_{i,j,1} + c_i b_{i,j,1}$ for all I in the set of k / 2 secret points broadcasted by P_j in Round 2

> SH \leftarrow P_i if P_i is accepted by at least 2t + 1 parties

> If $|SH| \leq 2t$ then discard D

Reconstruction Phase, 2 Rounds

- Round 1:
 - \succ Each $P_i \in SH$ broadcasts $f_i(x)$
- Round 2:
 - > P_j broadcasts $\alpha_{j,1}$'s which were not broadcasted during sharing phase and a_i , j,1's corresponding to these indices
- Local Computation by Each Party:
 - > P_j re-accepts P_i if $f_i(\alpha_{j,1}) = a_{i,j,1}$ for any of the newly revealed secret evaluation points
 - > REC \leftarrow P_i if P_i is re-accepted by at least t + 1 parties
 - If the shares of the parties in REC interpolate a degreet polynomial g(y) then output s = g(0). Else output NULL